
21

Graph Layouts

Author: Zevi Miller, Department of Mathematics and Statistics, Miami Uni-
versity.

Prerequisites: The prerequisites for this chapter are big-O notation and
basic concepts of graphs and trees. See Sections 2.2, 9.1, 9.2, 9.4, 10.1, and 10.4
of Discrete Mathematics and Its Applications.

Introduction

In this chapter we will discuss a set of graph problems having a common theme.
These problems deal with the question of how well a given graph G “fits” inside
some other given graph H . Why might we be interested in such problems? The
answer is that solutions to such problems tell us much about the best design for
interconnection networks of computers and for layouts of circuits on computer
chips. The solution to a special case of one of these problems also sheds light
on how to represent matrices in a compact way that makes it convenient to
manipulate them when executing standard matrix operations.

365

366 Applications of Discrete Mathematics

Dilation
First consider a computer network based on a graph G. This network consists
of a different computer located at each vertex of G, with two computers joined
by a direct link when the corresponding vertices are joined by an edge in G.
(We therefore continue to denote the network by G, its underlying graph.) We
can imagine programming these computers to run in parallel, each computer
receiving part or all of the original input data and then proceeding to perform
its own private computations as specified by the master program controlling all
the computers. At each time unit each computer is also allowed to pass the
results of the computation just completed to one of its neighboring computers
(i.e., the ones joined to it by an edge), and these neighbors will use these results
as inputs into their own computations later. We call such a network G an in-
terconnection network (or sometimes a parallel computation network).
By dividing up the work between its different computers, we can expect that
an interconnection network can solve at least some problems much faster than
a single computer could.

We now take H to be an interconnection network different from G such
that H has at least as many vertices as G; that is, |V (G)| ≤ |V (H)|. Suppose
that we have a program P for G to solve some problem as described in the last
paragraph, but that G is not available while H is available. (In fact, even if G
were available, we might still prefer to use H for standardization reasons.) The
question then becomes how to “simulate” the program for G by a program for H
which solves the same problem. Informally speaking, a simulation of G by H
is a way of describing how, using the program P as a guide, H can accomplish
the same task as G by assigning its computers the tasks assigned to those of G.
One way of doing this is to make a mapping (or correspondence) between the
vertices of G and the vertices of H so that corresponding vertices carry out the
same tasks. The obvious question is how to define such a mapping, and the
answer to this question in turn depends on how “effective” a given mapping is
in doing the simulation.

Clearly, we need to be a bit more precise about how to evaluate the effec-
tiveness of a mapping. We write

f : V (G) → V (H)

to indicate that f is a one-to-one (though not necessarily onto) mapping from
the vertices of G to the vertices of H . We will sometimes refer to such a
mapping f as an embedding of G in H . In our simulation each computation
of the program P at a vertex (i.e. computer) x in G will be replaced by the same
computation at the corresponding vertex f(x) in H . Also, each communication
of P between adjacent vertices x1 and x2 of G will be replaced by the same
communication between the corresponding vertices f(x1) and f(x2) in H .

Here is the place where we can measure the “effectiveness” of the map f .
Notice that whereas x1 and x2 could communicate in some unit time t because

Chapter 21 Graph Layouts 367

they were adjacent, the vertices f(x1) and f(x2) require communication time
d · t where d is the distance in H between f(x1) and f(x2). The simulation thus
introduces a time delay factor d in the simulation of P , and the delay could even
be worse if there is another adjacent pair z1 and z2 of G for which the distance
in H between f(z1) and f(z2) is bigger than the distance between f(x1) and
f(x2). We see therefore that one criterion for the effectiveness of f is that
the worst possible delay factor (as measured over all possible adjacent pairs of
vertices x1 and x2 in G) is minimized.

We now put these ideas into mathematical form. First we discuss distance.
Throughout this chapter, if x and y are two vertices of G, then a path between x
and y is a succession of vertices starting from x and ending at y in which every
two successive vertices are joined by an edge, and no vertex is repeated. The
length of a path is the number of edges on it (which is one less than the number
of vertices on it). Now there may be many different paths of differing lengths
between two given vertices in a graph. We define the distance between x and y
in G, written distG(x, y), to be the length of the shortest path in G from x to y.

Example 1 Find paths of lengths 2, 3, 4, 5, and 6 between x and y in the
graph of Figure 1.

Figure 1. Paths of various lengths between x and y.

Solution: Examples of these paths, in order of length, are

x, a, y x, b, c, y x, b, e, c, y x, b, e, c, a, y x, d, b, e, c, a, y.

There are other paths not listed here. Since the shortest path between x and y
has length 2, we have distG(x, y) = 2.

We can now describe precisely the worst possible time delay of a map
f : V (G) → V (H). For any two adjacent vertices x and y of G, the delay at
the edge {x, y} caused by f is the distance between f(x) and f(y) in H ; that is,
distH(f(x), f(y)). The worst possible delay, over all edges {x, y} in G, caused
by f is called the dilation of f and is denoted dil(f). Put more precisely,

dil(f) = max{distH(f(x), f(y)) : {x, y} ∈ E(G)}.

368 Applications of Discrete Mathematics

Example 2 Suppose that G is the graph obtained from K4 by removing an
edge (this graph is denoted K4−e) and H is the path on 4 vertices. In Figure 2
we illustrate two different maps from the vertices of G to the vertices of H , one
having dilation 2 and the other having dilation 3. We have dil(f) = 3 because
the edge {a, c} of G is sent to the pair of vertices f(a) and f(c) in H which
are distance 3 apart in H , and all other edges of G are sent to pairs that are
at distance 2 or less apart. But we have dil(g) = 2, since any edge of G is sent
by g to a pair of vertices in H that are distance 2 or less in H .

Figure 2. Two different maps f, g : V (G) → V (H) where G =
K4 − e and H is the path on four vertices. The second map is
optimal, so B(G, H) = 2.

Finally, we want to find a map f having minimum worst possible time
delay; that is, a map with minimum possible dilation. We call this minimum
B(G, H); or more precisely,

B(G, H) = min{dil(f) : f a one−to−one map from V (G) to V (H)}.
We see then that B(G, H) measures the minimum possible worst case time
delay when H simulates G, and so in some intuitive sense it measures how
“compatible” G and H are. We call the map f optimal if dil(f) = B(G, H),
that is, if it has minimum possible dilation over all possible one-to-one maps
from V (G) to V (H).

Example 3 What is B(G, H) for the graphs G and H in Figure 2?

Solution: We could try all 4! maps from the vertices of G to the vertices
of H , recording the dilation of each map as we go, and at the end we could
scan our list to find the minimum dilation. This minimum is B(G, H). We will
not carry out this procedure here, but instead note the following. In Figure 2
we found a map g : V (G) → V (H) satisfying dil(g) = 2. This shows that
B(G, H) ≤ 2. In fact, we can also show that B(G, H) ≥ 2 by proving that any
map M : V (G) → V (H) must satisfy dil(M) ≥ 2. We leave this to the reader
as Exercise 2. Thus, B(G, H) = 2.

Chapter 21 Graph Layouts 369

In the next two sections we will study the function B(G, H) for certain
types of graphs G and H that arise in various applications.

Bandwidth
The first of our minimum dilation problems arose originally in the context of
sparse matrices. We call a matrix A sparse if the number of nonzero entries
it has is small in comparison with its total number of entries. Such matrices
arise frequently as coefficient matrices of systems of equations or systems of
differential equations in numerical analysis and physics. When performing var-
ious operations on these matrices, such as matrix multiplication and matrix
inversion, we notice that a large number of our computations involve multiply-
ing 0s together. Even storing these matrices in a computer by recording every
entry means storing a large number of 0s. In fact, such an n× n matrix would
require storage of all its n2 entries, most of them being 0. This suggests that
we could perform our operations and our storage more efficiently if we concen-
trated on the nonzero entries, “filling in” the others in a predictably simple way
depending on the operation at hand.

The focus on the nonzero entries of a matrix A is made easier if all these
entries are concentrated in a “band” consisting of a small number of diagonals
of A above and below the main diagonal. Such a concentration would speed
up matrix multiplication and Gaussian elimination by making it possible to
carry out only a small fraction of all the computations involved and still get
the desired result, since the remaining computations (the ones involving entries
outside the band) involve all 0 entries and thus have predictable results. A small
band for A also allows us to use relatively little memory in storing A since we
could keep track of each nonzero entry by simply recording the diagonal to
which it belongs and where along that diagonal it can be found.

All this sounds promising, but what do we do if the nonzero entries of the
matrix A do not all lie in a small band about the main diagonal of A? The key
idea here is to permute the rows and columns of A, hoping to obtain a matrix
that does have the required small band. That is, we perform a permutation
(i.e. a renumbering) of the columns of A, and also the same permutation of
the rows of A. Such an identical permutation of rows and columns is called a
symmetric permutation. (In the case when A is the coefficient matrix of a
system of equations, this permutation of the rows is the same as reordering the
equations, and the permutation of the columns is the same as reindexing the
variables in the system.) If the resulting matrix A′ has a smaller band enclosing
all its nonzero entries than does A, then we would prefer to work with A′ rather
than with A. The results of our work on A′ can be easily translated back to
results on A. (In the context of coefficient matrices, the translation just amounts
to reindexing the variables again so that they have their original names.)

370 Applications of Discrete Mathematics

Example 4 In the 4×4 matrix at the top of Figure 3, only three super- and
subdiagonals are needed to enclose the 1s. Now, by interchanging columns 3
and 4, and also interchanging rows 3 and 4, we obtain the bottom matrix
in which only two super- and subdiagonals are needed to enclose all the 1s.
This interchange of rows and columns amounts to interchanging the names (or
subscripts) of variables 3 and 4 in the corresponding system of equations.

Figure 3. Two numberings of a graph and the corresponding
matrices.

What does all this have to do with dilation? The intriguing answer is that
the smallest possible band achievable (over all row and column permutations)
for a given matrix A is equal to B(G, H) for certain graphs G and H which are
defined in terms of A.

To understand this connection between bands of matrices and dilation, we
start by defining the path graph on n vertices.

Definition 1 The path graph Pn is the graph whose vertices are the integers
1, 2, . . . , n and whose edges are the successive pairs {i, i + 1}, 1 ≤ i ≤ n − 1.

Figure 2 shows the path graph P4.
Suppose G is a graph on n vertices. Then any one-to-one map f : V (G) →

V (Pn) may be viewed as a numbering (or labeling) of the vertices of G by
the integers 1, 2, . . . , n, and dil(f) is then the maximum distance between any
two integers f(x) and f(y) for which {x, y} is an edge of G. Then B(G, Pn)
is just the minimum possible dil(f) over all numberings of G with the integers
{1, 2, . . . , n}. The function B(G, Pn) (of a graph G) has been extensively studied
(see [5] or [3] for surveys), where it is called the bandwidth of G. We will
abbreviate B(G, Pn) by B(G). We summarize the meaning of bandwidth in the
following definition.

Chapter 21 Graph Layouts 371

Definition 2 The bandwidth B(G) of a graph G on n vertices is the mini-
mum possible dilation of any numbering of G with the integers 1, 2, . . . , n.

Example 5 Example 3 shows that B(K4 − e) = 2.

Now suppose we are given an n×n symmetric 0-1 matrix A = [aij]. Define
a graph G(A) by letting V (G(A)) = {1, 2, . . . , n} and saying that {i, j} is an
edge if and only if aij = 1. In Figure 3, referred to earlier, we see the 4×4 matrix
A and the corresponding graph G(A) = K4−e. Notice that each possible num-
bering f of G(A) for a matrix A corresponds to a symmetric permutation P (f)
of the rows and columns of A. Also, the dilation of any numbering f of G(A)
corresponds to the number of superdiagonals above and subdiagonals below the
main diagonal containing all the 1s in the matrix resulting from the permuta-
tion P (f). Hence B(G(A)) is the smallest possible band, over all symmetric
permutations of rows and columns of A, of super- and subdiagonals of A which
contain all the 1s of A. Finding this smallest band for A, or equivalently finding
B(G(A)), is (as we said before) important in being able to efficiently store A,
and in performing various operations on A such as Gaussian elimination and
inversion.

Example 6 Figure 3 also shows the correspondence between the dilation of
a numbering and the band of the corresponding matrix.

Calculating and Bounding Bandwidth
Now that we have defined bandwidth of graphs and understand its relation
to matrices, we will calculate the bandwidth of some familiar graphs and find
upper and lower bounds for the bandwidth of arbitrary graphs.

We can easily calculate the bandwidths, B(Kn) and B(Cn), of Kn and Cn.

Example 7 What is B(Kn) and B(Cn)?

Solution: Clearly B(Kn) = n − 1 since no matter what map f : V (Kn) →
V (Pn) we consider, the two vertices mapped to 1 and n are joined by an edge,
showing that dil(f) = n − 1. Since this is true for any map f , the smallest
possible dilation is n − 1 and thus B(Kn) = n − 1.

To find B(Cn), we can first show that B(Cn) > 1 (this is left to the reader).
We can also show that B(Cn) ≤ 2 by finding a map f : V (Cn) → V (Pn) with
dil(f) = 2. This can be done by numbering the “left” half of Cn with the odd

372 Applications of Discrete Mathematics

integers from 1 to n or n−1 (depending on whether n is odd or even respectively)
in increasing order as we proceed counterclockwise around Cn, and numbering
the “right” half with the even integers from 2 to n or n − 1 (depending on
whether n is even or odd respectively) in increasing order proceeding clockwise,
starting from the vertex at clockwise distance one from the vertex numbered 1.
This is illustrated in Figure 4. Since 1 < B(Cn) ≤ 2, it follows that B(Cn) = 2.

Figure 4. An optimal numbering of Cn showing that B(Cn) = 2.

Example 8 What is is the bandwidth B(Km,n) of Km,n where m ≤ n?

Solution: We will show that B(Km,n) = m − 1 + �n/2�, where m ≤ n. We
first show the upper bound B(Km,n) ≤ m− 1+ �n/2� by constructing a map f
for which dil(f) = m − 1 + �n/2�. Let A and B be the disjoint sets of sizes m
and n respectively defining the partition of the vertices of Km,n into two sets.
We map �n/2	 of the vertices in B to the integers 1, 2, . . . , �n/2	, we then map
all vertices in A to the integers �n/2	 + 1, . . . , �n/2	 + m, and finally we map
the remaining �n/2� vertices of B to the integers �n/2	 + m + 1, . . . , m + n.
With this map we see that the edge of Km,n that is stretched the longest is the
one joining the vertex of A mapped to �n/2	+ 1 to the vertex of B mapped to
m + n. This stretch is by definition the dilation of this map, and it has length
m − 1 + �n/2�.

We now prove the lower bound B(Km,n) ≥ m − 1 + �n/2�. Let f be any
numbering of V (Km,n) by the integers 1, 2, . . . , m + n. Let m1 and M1 be the
minimum and maximum of the set f(A), and let m2 and M2 be the minimum
and maximum of the set f(B). Now at least one of the inequalities m2 ≤ M1

or m1 ≤ M2 holds, so that at least one of the intervals [m2, M1] or [m1, M2] is
well defined. Then among either the one or the two intervals that are in this
way defined, at least one must contain at least half the vertices in the set f(B).
This interval by its definition must also contain all the integers in the set f(A).
Since the first and last integers of this interval correspond to points on opposite
sides of Km,n, it follows that dil(f) is at least the length of this interval. But
this length is clearly at least �|f(B)|/2� + |f(A)| − 1 = �n/2�+ m − 1.

Chapter 21 Graph Layouts 373

Example 9 Figure 5 shows the optimal numbering of K4,4 given by the
example.

Figure 5. An optimal numbering of K4,4.

We will now derive some bounds on B(G) in terms of other graph parame-
ters. Before giving these bounds, we might well ask why we should be interested
in such bounds. The reason is that up to now we have not stated a general pro-
cedure for computing B(G) for an arbitrary graph G on n vertices. This is
because there is no known procedure for doing this other than attempting all n!
possible maps f : V (G) → V (Pn), which is not a very appetizing prospect. In
this light we can see that bounds for B(G) which are easy to compute would be
very welcome. For many graphs certain graph parameters can be easily com-
puted, and in such cases the bounds on B(G) which we will find are then also
easy to compute.

The graph parameters we will use for our bounds are the number of ver-
tices n, the number of edges q, the connectivity κ, the independence number β,
and the diameter D.

Definition 3 We define the connectivity κ(G), for a connected graph G, to
be the smallest number of vertices whose removal from G (together with the
removal of all edges incident on these vertices) leaves a disconnected graph. (By
convention we take κ(Kn) = n − 1 and κ(G) = 0 for a disconnected graph G.)

The independence number β(G) is the maximum number of vertices in any
set S of vertices of G with the property that no two vertices in S are joined by
an edge. (A set S with this property is called an independent set in G.)

The diameter D(G) is the maximum distance between any two vertices
of G.

Example 10 For the graph of Figure 1 we have n = 8, q = 13, κ = 2, β = 3,
and D = 3. We have κ = 2 because the removal of the set {e, y} of size 2 leaves
a disconnected graph while the removal of any single vertex leaves the graph
still connected.

374 Applications of Discrete Mathematics

We have β = 3 since there is an independent set {x, e, y} of size 3 but no
independent set of size 4 or greater.

Finally, we have D = 3 since the maximum distance between any two
vertices is 3 (for example, dist(x, y) = 3).

The bounds on bandwidth we are looking for are based on two simple
observations we will make in the next two lemmas.

Lemma 1 If G is a subgraph of H with the same number of vertices as H ,
i.e. |V (G)| = |V (H)|, then q(G) ≤ q(H), κ(G) ≤ κ(H), and β(G) ≥ β(H).

The reader should verify this. To see that the hypothesis |V (G)| = |V (H)|
is necessary, the reader is invited to find an example of a subgraph G of some
graph H with |V (G)| < |V (H)| for which κ(G) > κ(H). The second observation
requires some notation. For any graph H let Hk be the graph having the same
vertex set as H in which two vertices are joined by an edge if and only if they
are at distance at most k in H .

Example 11 Draw the graph P 2
5 .

Solution: The graph P2
5 is illustrated in Figure 6. We obtain it by starting

with P5 and then joining by an edge every pair of vertices x and y separated
by a distance of 2; in other words, joining “every other” vertex on P5.

Figure 6. The graph P 2
5 .

Lemma 2 Let G be a graph on n vertices. Then B(G) ≤ k if and only if G
is a subgraph of P k

n .

Proof: Recall that if the bandwidth of G satisfies B(G) ≤ k, then the vertices
of G can be numbered with the integers 1 through n in such a way that for any
edge {x, y} the numbers given to x and y differ by at most k. Therefore this
numbering is an embedding of G as a subgraph of P k

n .
To establish the converse, we observe that an embedding f of G as a

subgraph of P k
n can also be viewed as a numbering satisfying dil(f) ≤ k. Hence

B(G) ≤ k.

Chapter 21 Graph Layouts 375

We are now ready to state our bounds on bandwidth.

Theorem 1 Let G be a graph having n vertices, q edges, connectivity κ,
independence number β, and diameter D. Then

(i) B(G) ≥ n − 1
2 (1 + ((2n − 1)2 − 8q)1/2).

(ii) B(G) ≥ κ.
(iii) B(G) ≥ n

β − 1.

(iv) B(G) ≥ n−1
D .

Proof: We first note that κ(P k
n) = k, β(P k

n) = �n/k�, and |E(P k
n)| = 1

2k(2n−
k − 1). We leave proofs of these facts as Exercise 4. Now suppose B(G) = k.

To prove (i) we use Lemmas 1 and 2, obtaining

q ≤ |E(P k
n)| =

1
2
k(2n − k − 1).

Solving the quadratic inequality in k we obtain (i).
To prove (ii) we have similarly

κ(G) ≤ κ(P k
n) = k = B(G).

To prove (iii) we use Lemma 1 (as applied to β, with P k
n playing the role of H)

to get β(G) ≥ β(P k
n). Exercise 4 asks the reader to prove that β(P k

n) = �n/k�
and the right hand side is at least n/k. Hence (iii) follows.

To prove (iv), consider any numbering f of G with the integers 1, 2, . . . , n.
Let x = f−1(1) and y = f−1(n). Clearly there is a path x = x0, x1, x2, . . . , xt =
y in G from x to y of length t ≤ D. The image of this path under f starts at 1
and ends at n. By the pigeonhole principle there must be an i such that

|f(xi) − f(xi−1)| ≥ n − 1
t

≥ n − 1
D

.

Thus dil(f) ≥ (n − 1)/D , and part (iv) follows.

We remark that the simple lower bound in part (iv) of the previous theorem
actually gives us the exact bandwidth in some important classes of graphs, as
described in Theorem 2, which follows. Let Tk be the complete binary tree of k
levels. Thus, Tk has a root at level 1, and 2i−1 vertices at level i for i ≤ k.

Theorem 2 The bandwidth of Tk (k ≥ 1) is given by

B(Tk) =
⌈

2k−1 − 1
k − 1

⌉
.

376 Applications of Discrete Mathematics

Proof: Observe first that Tk has 2k − 1 vertices, and has diameter 2k − 2.
Hence B(Tk) ≥

⌈
2k−1−1

k−1

⌉
by part (iv) of Theorem 1. To prove that equality

holds we can construct a numbering of Tk with dilation
⌈

2k−1−1
k−1

⌉
. We leave

this construction as a challenging problem for the reader.

Example 12 Figure 7 shows a numbering of T4 with dilation 3. This num-
bering is optimal by Theorem 2.

Figure 7. An optimal numbering of T4.

A little bit of thought gives a stronger lower bound than (iv) which is
nonetheless based on the same idea. Define the density of a connected graph H
to be

den(H) = max
{⌈ |V (G)| − 1

D(G)

⌉
: G a connected subgraph of H

}

where D(G) denotes the diameter of a graph G.

Example 13 Calculate the density of the graph C shown in Figure 8.

Solution: Consider the subgraph G of C consisting of vertex 7 together with
all its neighbors. For this G we have

⌈
|V (G)|−1

D(G)

⌉
= 4, and no other subgraph

has a larger such ratio. Therefore den(C) = 4.

To get a feeling for den(H), notice first that for any subgraph G of H the
ratio

⌈
|V (G)|−1

D(G)

⌉
measures how tightly packed or “dense” G is in the sense of

packing in a number of vertices within a given diameter. Thus, although H
may be dense in some parts and less dense in others, den(H) measures the
densest that H can be anywhere. Notice that when G is a subgraph of H
we have B(G) ≤ B(H), while B(G) is itself bounded below as in part (iv) of
Theorem 1. We can in fact show the following.

Lemma 3 For any graph H , we have B(H) ≥ den(H).

Chapter 21 Graph Layouts 377

Figure 8. A caterpillar C, and an optimal numbering of it.

It is now interesting to see that just as the trivial lower bound (d) is the
actual value of the bandwidth for a natural class of graphs, the more general
lower bound of Lemma 3 is the actual value of bandwidth for an additional
(and also natural) class of graphs. Recall that a tree T is called a caterpillar
if it contains a path such that every vertex not on the path is adjacent to some
vertex on the path.

Theorem 3 For any caterpillar C we have B(C) = den(C).

We omit the proof here, though one can be found in [11] or [1] as a conse-
quence of an algorithm for computing the bandwidth of any caterpillar.

Example 14 A caterpillar C, together with an optimal numbering of C, is
shown in Figure 8. We saw in Example 13 that den(C) = 4. By Lemma 3
we have B(C) ≥ 4, while the numbering given in the figure has dilation 4. It
follows that B(C) = 4 = den(C) (as claimed by Theorem 3).

Before leaving bandwidth, we mention a widely used algorithm for approx-
imating B(G) for arbitrary graphs G. It is called a “level algorithm” since it
numbers the vertices of G by levels. Specifically, we begin by choosing a root v
of G. Now let Si be the set of vertices in G at distance i from v (we think of Si

as being “level i” of G). Now the algorithm lets f(v) = 1. Then it numbers
the neighbors of v consecutively using the numbers 2 through |S1|+ 1, and the
vertices at distance 2 from v consecutively using |S1|+2 through |S1|+ |S2|+1,
etc. In general, the algorithm numbers the vertices in any given level with con-
secutive integers, with level i coming before level j if i < j. In other words, the
algorithm maps Si to the integers | ∪t≤i−1 St| + 2 through | ∪t≤i St| + 1. Note
that the resulting dilation is at most twice the size of the largest level Si since
edges of G can only run between successive levels.

378 Applications of Discrete Mathematics

Example 15 Figure 9 illustrates a numbering of a graph produced by the
level algorithm. We see that there are five levels, and the vertices within each
level are numbered consecutively.

Figure 9. A numbering by levels.

How good is this algorithm ? That is, how close to the actual bandwidth is
the dilation of the numbering produced by the level algorithm ? The following
example (taken from [10]) shows that this algorithm performs badly on at least
some examples. First we need some notation (similar to the “big O”) on growth
of functions.

Definition 4 For two functions f(n) and g(n), we write

f(n) = Ω(g(n))

if f(n) ≥ Kg(n) for some constant K when n is sufficiently large. We also write

f(n) = Θ(g(n))

to signify that f(n) = Ω(g(n)) and f(n) = O(g(n)).

We see then that while f = O(g(n)) means that f is bounded above by
a constant times g for n sufficiently large, the notation f(n) = Ω(g(n)) means
that f is bounded below by a constant times g for n sufficiently large and
f(n) = Θ(g(n)) means that f is bounded both above and below by constants
times g (the constant for the upper bound being usually different than the
constant for the lower bound).

Chapter 21 Graph Layouts 379

Example 16 For each integer n ≥ 1 we construct a tree L(n) as follows.
Start with a path P2n on 2n vertices. Now attach a path on 2n−1 vertices to
the 2n−1st vertex of P from the left. Then attach a path of 2n−2 vertices to
the 2n−1 + 2n−2st vertex of P from the left, a path of 2n−3 vertices to the
2n−1 +2n−2 +2n−3st vertex of P from the left, etc. The tree L(4) is illustrated
in Figure 10. Now choose the leftmost vertex of P , call it v, as the root of L(n)
for the level algorithm. Observe that there are n + 1 vertices at distance 2n − 1
from v, and n vertices at distance 2n − 2 from v; that is, |S2n−1| = n + 1 and
|S2n−2| = n. Also, every vertex of S2n−1 is joined to some vertex of S2n−2 by
an edge. Hence any level algorithm with v as root will produce a numbering f
of L(n) such that

dil(f) ≥ |S2n−1| = n + 1 = Ω(log|L(n)|).
On the other hand it can be shown that B(L(n)) = 2 for all n. Thus there is a
gap between B(L(n)) = 2 and the estimate Ω(log|L(n)|) for B(L(n)) proposed
by the level algorithm that grows without bound as n approaches infinity.

Figure 10. The tree L(4). A level algorithm with v as root
performs poorly.

Dilation Involving Other Pairs of Graphs
Let us now consider briefly the parameter B(G, H) for graphs H other than
just the path. Because cycles occur so frequently in graph theory we will first
look at B(Cn, H) where H is any connected graph on n vertices. Along the
way we will find an interesting way of computing an upper bound on B(Cn, T)
where T is any tree on n vertices. Also because of its importance in circuit
layout design on computer chips, we will study B(G, G2) where G is any graph
and G2 is the two-dimensional grid graph (to be defined later). Our first result
is perhaps surprising because of its constant upper bound applicable to a large
class of graphs H .

Theorem 4 Let H be any connected graph on n vertices. Then B(Cn, H) ≤
3 where Cn denotes the cycle on n vertices.

380 Applications of Discrete Mathematics

This result is found in [12]. We will sketch here the construction behind
the proof because of its interesting algorithmic nature. First, however, we need
to understand a connection between B(Q, G1) and B(Q, G2) when G1 and G2

are two graphs related in a special way, and Q is some third graph.

Lemma 4 Suppose that G1 is a subgraph of a graph G2 having the same
number of vertices as G2. If Q is a third graph with |V (Q)| ≤ |V (G1)|, then
B(Q, G2) ≤ B(Q, G1).

Proof: Any map f : Q → G1 can also be viewed as a map f ′ : Q → G2,
and we have dil(f ′) ≤ dil(f) since G2 has all the edges which G1 has, and
possibly more. Now if we take f : Q → G1 to be a map with smallest possible
dilation B(Q, G1), then since B(Q, G2) is the smallest possible dilation of any
map from Q to G2 (possibly even smaller than dil(f ′)) we get

B(Q, G2) ≤ dil(f ′) ≤ dil(f) = B(Q, G1).

Now we know that any connected graph H on n vertices has a spanning
tree; that is, a subgraph T which is a tree on n vertices. If we apply Lemma 4
with Cn, H , and T playing the roles of Q, G2, and G1 respectively, then we get
B(Cn, H) ≤ B(Cn, T). Therefore, if we could show that B(Cn, T) ≤ 3 for any
tree on n vertices, then Theorem 4 would be proved. This amounts to showing
that there is a map f : Cn → T such that dil(f) ≤ 3.

The following is an algorithm for constructing an embedding f : Cn → T
into any tree T on n vertices satisfying dil(f) ≤ 3. We denote the vertices of Cn

by 1, 2, . . . , n indexed in cyclic order. Given a root vertex r ∈ T we let

level(x) = distT (r, x) for any x ∈ T.

We will also refer to a depth first search of T as a DFS of T (see Section 10.4
of Discrete Mathematics and Its Applications).

We first describe this algorithm informally. We imagine walking through
the vertices of T in the order of a DFS, and constructing our map f as we go.
Suppose that we have so far mapped the first i−1 vertices {1, 2, . . . , i−1} of Cn

to T , and we are now located at the vertex f(i− 1) of T . Our task is to decide
how to map vertex i; that is, what vertex of T should be chosen as f(i). We
call a vertex of T “used” if it is f(t) for some t where 1 ≤ t ≤ i− 1; that is, if it
has been used as an image of the partially constructed map f . The algorithm
moves to the first vertex of T following f(i − 1) (in the DFS) which is unused
— call this vertex v. We must now decide whether to use v as f(i). How do we
make this decision? The answer depends on whether level(v) is even or odd. If
level(v) is even then we use v; that is, we let f(i) = v. If level(v) is odd, skip v
and continue walking on the DFS to an unused child of v, if such a child exists,
and repeat the procedure. If all the children of v have been used, then use v by
letting f(i) = v.

Chapter 21 Graph Layouts 381

ALGORITHM 1. Cycle-Tree.

procedure cycle-tree (T : a tree on n vertices)
choose a vertex v1 ∈ T as a root of T
f(1) := v1

S1 := {v1}
order the vertices of T according to a DFS of T starting at

the root v1

for i := 2 to n
begin
{We assume that f(1), f(2), . . . , f(i − 1) have been defined,
with values v1, v2, . . . , vi−1, respectively, and that Si−1 =
{v1, v2, . . . , vi−1}.}

z := the first vertex following vi−1 in the DFS such that
z /∈ Si−1

if level(z) is even then vi := z
else {level(z) is odd}
if all children of z lie in Si−1 then vi := z
else vi := the first child of z in the order of the DFS that

is not in Si−1

f(i) := vi

Si := Si−1 ∪ {vi}
end
{The output is f(1) = v1, f(2) = v2, . . . , f(n) = vn.}

Algorithm 1 gives this algorithm in pseudocode. The input will be a tree T
on n vertices and its output will be a one-to-one map f : Cn → T satisfying
dil(f) ≤ 3.

Example 17 Figure 11 shows an embedding f : C15 → T4 of C15 into
the level 4 complete binary tree produced by Algorithm Cycle-Tree such that
dil(f) = 3. It is instructive to go through the steps the algorithm follows to
produce this embedding.

We omit the proof that the embedding f : Cn → T produced by Algorithm
Cycle-Tree indeed satisfies dil(f) ≤ 3. The details can be found in [12].

We now pass to a brief look at B(Tr, G2), where Tr is the level r complete
binary tree, and G2 is the infinite two-dimensional grid.

382 Applications of Discrete Mathematics

Figure 11. An embedding F : C15 → T4 produced by algo-
rithm Cycle-Tree.

Definition 5 The two dimensional grid G2 is the graph with vertices

V (G2) = {(x, y) : x and y are integers}

and edges

E(G2) = {{(x1, y1), (x2, y2)} : |x1 − x2| + |y1 − y2| = 1}.

Thus, the vertices of G2 are the lattice points in the plane (i.e., points with
integer coefficients), and two lattice points are joined by an edge in G2 when
they are unit distance apart.

The grid graph G2 is an especially important graph in applications. One of
the commonly used interconnection networks, called the mesh, has the structure
of a finite rectangle in G2. (That is, the mesh is just an m × n subgrid of G2

for some m and n.) Also, G2 is useful in analyzing circuit layout on computer
chips — but more on this later. For these reasons it is important to estimate
B(H, G2) for various graphs H as a way of finding the communication delay
when G2 simulates H . Although this problem is difficult, we at least have
a good lower bound for B(Tr, G2). We include the proof of this bound here
because it is based on a very simple geometrical idea.

Theorem 5 The minimum possible dilation of any mapping of a complete
binary tree on n vertices into the two-dimensional grid is bounded below by a
constant times

√
n/ logn when n is sufficiently large.

That is, we have
B(Tr, G2) = Ω(

√
n/ logn)

where n = |Tr|.
Proof: Let f : Tr → G2 be a one-to-one map, and let d = dil(f). Also, let z
be the root of Tr, that is, the vertex of degree 2 in Tr. Since every vertex of Tr

is within distance r − 1 of z, it follows that every vertex in f(Tr) can be found

Chapter 21 Graph Layouts 383

within distance (as measured in G2) d(r − 1) of f(z), and hence within a circle
or radius d(r − 1) in the plane centered at f(z). That is, we are saying that
the entire image f(Tr) must be contained in a circle C of radius d(r − 1) in
the plane centered at f(z). Now this image consists of |V (Tr)| = 2r − 1 lattice
points, so C must contain at least 2r − 1 lattice points since it contains this
image. But the number of lattice points contained within a circle in the plane
is proportional to the area of that circle. Since the area of C is πd2(r − 1)2, it
follows that πd2(r − 1)2 ≥ K(2r − 1), for some constant K. Solving for d we
get

d ≥
(

K(2r − 1
π(r − 1)2

)1/2

≥ L
2r/2

r
,

where L is some other constant (for example L = K/(2π) will do). Now since
n = 2r − 1, we see that 2r/2 and r are proportional to

√
n and log n (to the

base 2) respectively. Therefore, we get

d = Ω
(

2r/2

r

)
= Ω

(√
n

log n

)
,

and the theorem follows.

It is remarkable that in fact this lower bound is, up to a constant factor, also
an upper bound! That is, one can prove that B(Tr, G2) = O(

√
n

log n). Thus, the
function

√
n/ logn is, up to a constant factor, a correct estimate for B(Tr, G2).

The proof of this, though requiring no special knowledge beyond the elements
of graph theory, is still more complicated than the proof of Theorem 5. The
interested reader may find it in [14], pp. 89–91.

Remembering that in applications we would only use a finite m×n subgrid
of G2 as an interconnection network, the reader may well wonder if one could get
as good an upper bound for B(Tr, H) as for B(Tr, G2) if H were a particularly
small finite subgrid of G2, say with just enough points to accommodate Tr.
Intuitively, one would expect that being “hemmed in” by H would make it
harder to find embeddings with small dilation than when we had as much of G2

to work with as we wanted. We will return to this subject when we discuss the
“area” of an embedding later. For now we try to be precise about relating the
size of the target graph to the size of the domain graph in a graph embedding.

Definition 6 Consider a graph embedding f : V (G) → V (H). The expan-
sion of f is exp(f) = |H |/|G|.

Example 18 In Figure 12 the graph G on the left has 4 vertices while the
graph H on the right has 7 vertices. Hence the map f : V (G) → V (H) satisfies
exp(f) = 7/4.

384 Applications of Discrete Mathematics

Figure 12. Embedding complete ternary trees into complete
binary trees.

Example 19 An example in which one extreme of this tradeoff can be easily
seen is the embedding of complete ternary trees (i.e. 3-ary trees) into complete
binary trees. Let T (3)r be the complete ternary tree with r levels, and thus
|T (3)r| = (3r − 1)/2. The basic idea leading to an embedding f : T (3)r → T2r

with dil(f) = 2 is indicated in Figure 12. The intended pattern is to embed
level i of T (3)r into level 2i − 1 of T2r in the indicated manner for all i ≥ 1.
The fact that dil(f) = 2 is then easy to see. But what is exp(f)?

Since T2r has 22r − 1 vertices, when we form the required ratio we get

exp(f) = 2
(

22r − 1
3r − 1

)
= Θ

(
22r − 1
3r − 1

)
= Θ

((
4
3

)r)
.

Now, letting n = |T (3)r|, we should try to express the last quantity on the
right as a function of n. One way to do this is to ask ourselves what power,
call it α, we must raise n to in order to get this last quantity. We can answer
this by working backwards. Writing nα = Θ((4

3)r) and substituting (3r − 1)/2
for n, we get (3r)α = Θ((4

3)r) (having absorbed the factor of 2 in our Θ). Now
taking the rth root of both sides, we can solve for α by taking logarithms and
the result is α = log3(4/3). In conclusion, we have

exp(f) = Θ(nα),

where α = log3(4/3).

Thus, in order to achieve a constant dilation of 2, we have paid the heavy
price of expanding by a factor that grows as a fixed positive power of n. On
the other hand, what price in dilation would we pay if we insisted on constant
expansion? The fascinating answer is provided in [8] where it is shown that
any embedding of a complete ternary tree into a complete binary tree with
expansion less than 2 must have dilation Ω(log log log n). The proof of this is
beyond the scope of this chapter, but the interested reader is referred to [8] to
see what is involved.

Chapter 21 Graph Layouts 385

Min Sum and Cutwidth
In applications where a circuit (or graph) G is for automation purposes mapped
on a path, the wires joining vertices of G must be placed on channels or tracks
running parallel to the path. No two wires are allowed to overlap on the same
track. Since the number of different tracks needed for the mapping essentially
determines the area of the circuit layout (where the area is the product of the
number of tracks and the length of the path), we would like to minimize the
number of tracks. One way of doing this is to use each track “as much as
possible”. This amounts to constructing our map f in such a way that the
edges of G, when drawn between points on the image path, overlap as little as
possible.

We now express these ideas more precisely. Start with a one-to-one map
f : V (G) → V (Pn) from G to the path on n vertices. For each interval (i, i+1)
of the “host” graph Pn we let cut(i) be the number of “guest” edges from G
which pass over that interval; that is, we let

cut(i) = |{{f(x), f(y)} : {x, y} ∈ E(G), f(x) ≤ i and f(y) ≥ i + 1}|.

Now we let value(f) be the maximum of cut(i) over all 1 ≤ i ≤ n − 1. Thus,
value(f) is the biggest overlap of edges that we have over any interval when we
use the map f . Finally, we define the cutwidth of G, which is denoted c(G),
to be the smallest possible biggest overlap, taken over all possible maps f ; that
is,

c(G) = min{value(f) : f : V (G) → V (Pn) a one-to-one map}.
Thus, c(G) is proportional to the smallest area possible in a linear layout of G
subject to the constraint that no two wires overlap in the same channel.

Example 20 In Figure 13 we illustrate a graph G with five vertices and two
different maps from G to P5. The second map has the smaller value; in fact it
is easy to see that no map can have a smaller value; that is, c(G) = 3.

Another mapping problem which we will discuss follows immediately from
the idea of dilation. When studying the dilation of a map f : V (G) → V (H)
we are finding the worst possible time delay, over all edges in G, caused by f ;
that is, we are finding dil(f). It is also natural to consider the average time
delay caused by f , since although dil(f) might be large it could happen that f
might still be a “good” map if it has small time delay on a large fraction of
all the edges of G. We would naturally calculate the average by adding up the
individual delays and dividing by the total number of edges in G, and then we
could ask for the smallest possible average over all possible maps f .

386 Applications of Discrete Mathematics

Figure 13. Two embeddings; the second is cutwidth optimal.

We now state all this precisely. Again we start with a one-to-one map
f : V (G) → V (H). Define

sum(f) =
∑

{x,y}∈E(G)

distH(f(x), f(y)),

which is the sum of the individual delays. We won’t bother here to divide by
the number of edges in G to get the average delay, since this number does not
depend on the map f and we could do the division later if we care to. Now
the minimum average we are looking for (apart from delaying the division until
later) is

S(G, H) = min{sum(f) : f : V (G) → V (H) a one-to-one map}.

Thus we may think of S(G, H) as being the best average dilation (or time delay)
obtainable over all embeddings f : G → H .

Example 21 Find sum(f) and sum(g) where f and g are the dilation 3 and
dilation 2 numberings respectively of K4 − e shown in Figure 3.

Solution: The number on a vertex of K4−e indicates the vertex of P4 to which
it is mapped. Thus, for each edge {x, y} of K4 − e the term distH(f(x), f(y)),
with H = P4, is just the difference between the numbers given to x and y. So,
to calculate sum(f) or sum(g) we just need to add these differences over all
edges in K4−e. Carrying out this addition we get sum(f) = 8 and sum(g) = 7.

Chapter 21 Graph Layouts 387

Some elementary results on the min sum and cutwidth problems are sum-
marized in the following examples. We abbreviate S(G, Pn) by S(G).

Example 22 What are S(Pn), S(Cn), S(K1,n), and S(Kn)?

Solution: We have S(Pn) = n− 1, S(Cn) = 2(n− 1), S(K1,n) = �n2/4	, and
S(Kn) = n(n2 − 1). (See Exercise 9.)

Example 23 What are c(Pn), c(Cn), c(K1,n), and c(Kn)?

Solution: We have c(Pn) = 1, c(Cn) = 2, c(K1,n) = �n/2	, and c(Kn) =
�n2/4	. (See Exercise 11.)

Some values for S and c are difficult to prove. Values of S(Tk) and c(Tr,k)
(where Tr,k is the complete k-level r-ary tree) have been computed. See [4]
and [9]. Although the computation of both c(G) and S(G) is in general difficult,
polynomial time algorithms have been developed for computing c(T) and S(T)
when T is a tree (see [15], [7], [6]). These results are well outside the scope of
this chapter, but the reader is encouraged to study them in order to gain an
appreciation for algorithms in graph theory.

The analogue of Theorem 4 for min sum is the following.

Theorem 6 [12] Let H be any connected graph on n vertices. Then

S(Cn, H)
|E(H)| ≤ 2 − 2

n
.

The map f : Cn → H which provides the upper bound for S(Cn, H) of Theorem
6 is the one produced in the algorithm Cycle-Tree (given earlier) applied to any
spanning tree of H .

Area
In this section we discuss the area of a graph embedding into G2, the 2-
dimensional grid. Results in this subject have obvious applications to the layout
of circuits on computer chips, these chips being wafers with vertical and hori-
zontal tracks etched into them along which connections between circuit elements
must run. Thus, we let H be an arbitrary graph, and we consider a one-to-one
map f : H → G2. To make our analysis realistic, we apply generally accepted
assumptions on how wires run along the tracks of the chip. These assumptions

388 Applications of Discrete Mathematics

constitute the so called “Thompson grid model” [13]. Specifically, we view f
not only as a map of vertices, but also as a map of the edges of H to paths in G2,
these paths of course running along the vertical and horizontal tracks of G2.
We also require that distinct edges e1 and e2 of H have images f(e1) and f(e2)
which are not allowed to run along the same track (vertical or horizontal) of G2

for any distance, although they may cross at a point when one image is run-
ning horizontally while the other is running vertically. A map satisfying these
conditions is often called a circuit layout (with H being the electronic circuit).

Definition 7 The area A(f) of an embedding f : H → G2 is the product of
the number of rows and the number of columns of G2 which contain any part
of the layout f(H).

Example 24 In Figure 14 we illustrate an embedding f : K4 − e → G2

with area 6 (because we use 2 rows and 3 columns) and dilation 2, and an
embedding f : K4 → G2 with area 15 (because we use 3 rows and 5 columns)
and dilation 8. Each unit segment in G2 that is part of the layout has been
labeled with the edge of the graph that runs along it. Notice that no two edges
in the layout run along the same segment for any distance, though they may
cross at the intersection points of the segments.

Figure 14. Embeddings of K4 − e and K4 in the grid G2.

In chip manufacturing we are concerned with producing chips having as
small an area as possible. Therefore, given a graph H, we are interested in
finding a map f : H → G2 for which A(f) is as small as possible.

In order to get a feeling for what is involved in minimizing area, we will
consider here in some detail the relatively simple case when H is a complete
binary tree T2k+1 on 2k + 1 levels and height 2k. We use an embedding called
the H-tree layout because it follows a recursive pattern based on the letter H .
We illustrate H-tree layouts of T3 and T5 in Figure 15. In general our goal is
to embed T2k+1 into a square S in G2 of dimensions (2k+1 − 1) × (2k+1 − 1).

Chapter 21 Graph Layouts 389

Figure 15. H-tree layouts of T3 and T5.

An informal description of how this is done is as follows. We map the
degree 2 node z of T2k+1 to the middle of S. We now use the horizontal and
vertical tracks of G2 which meet at z to separate S into four quadrants, each
quadrant being a square of dimensions (2k −1)× (2k−1). Now recursively map
the four subtrees isomorphic to T2k−1 and rooted at the grandchildren of z to
these four quadrants. Finally use one of the two tracks separating the quadrants
as part of the T3 which interconnects z, its children, and its grandchildren.

From this recursive description of the H-tree layout, and with Figure 15 as
an aid, we can establish the following which gives a good embedding of T2k+1

into G2 from the standpoint of both area and dilation.

Theorem 7 There is an H-tree layout f : T2k+1 → G2 with the following
properties. Let n = |T2k+1|.

(i) f(T2k+1) is contained in a square of dimensions (2k+1 − 1)× (2k+1− 1).

(ii) A(f) = O(n).

(iii) dil(f) = O(
√

n).

Proof: For (i) we observe that a side of S must have length one more than
twice a side of the square containing the H-tree layout of T2k−1. Since the
latter has side length 2k − 1 by induction, it follows that S has side length
2(2k − 1) + 1 = 2k+1 − 1, as claimed. For (ii) we note that the area is A(f) =
O(22k) while n = 22k+1 −1. Hence it is easy to see that A(f) = O(n). For (iii),
we can check that the longest image of an edge is the one joining z to one of its
children. The path in S to which this edge is mapped has length one more than
half the side length of one of the quadrants. Since this side length is 2k+1 − 1,
we get dil(f) = 1 + O(2k) = O(

√
n).

390 Applications of Discrete Mathematics

It is natural to ask how well the H-tree layout does, using area and dilation
as yardsticks. Clearly the area of O(n) achieved is optimal up to a constant
factor since any n-vertex graph must use Ω(n) area. As for dilation, we already
know from Theorem 5 that any embedding f : T2k+1 → G2 (even without the
constraints of the Thompson model) satisfies dil(f) = Ω(

√
n/ log n). Hence the

dilation O(
√

n) achieved by the H-tree layout is at most a factor of log n from
the smallest possible that the dilation could be.

Finally, what about graphs other than complete binary trees? It can be
shown that any n-vertex binary tree can be laid out in area O(n), and any
n-vertex planar graph can be laid out in area O(n log2 n). These results, and
more general ones applying to any class of graphs having “f(n) separators” for
some suitable function f , are outside the scope of this chapter. The reader is
referred to [14] for a good exposition, and to [2] for some recent results.

Suggested Readings

1. S. Assman, G. Peck, M.Syslo, and M.Zak, “The bandwidth of caterpillars
with hairs of length 1 and 2”, SIAM J. Alg. Discrete Methods, 1981,
pp. 387–391.

2. S. Bhatt and F. Leighton, “A framework for solving VLSI graph layout
problems”, J. of Computer and System Sciences, Vol. 28, No. 2, 1984,
pp. 300–343.

3. P. Chinn, J. Chvatalova, A. Dewdney, and N. Gibbs, “The bandwidth prob-
lem for graphs and matrices — a survey”, J. of Graph Theory, Vol. 6, 1982,
pp. 223–254.

4. F. Chung, “A conjectured minimum valuation tree”, Problems and Solu-
tions in SIAM Review, Vol. 20, 1978, pp. 601–604.

5. F. Chung, “Labelings of Graphs”, in Selected Topics in Graph Theory 3,
eds. L. Beineke and R. Wilson, Academic Press Ltd., London, 1988,
pp. 151–168.

6. F. Chung, “On optimal linear arrangements of trees”, Computers and
Mathematics with Applications, Vol. 10, 1984, pp. 43–60.

7. M. Goldberg and I. Klipker, “Minimal placing of a line” (in Russian), Tech-
nical Report, Phsico-Technical Institute of Low Temperatures, Academy of
Sciences of Ukrainian SSR, USSR, 1976.

8. J. Hong, K. Melhorn, and A. Rosenberg, “Cost trade-offs in graph embed-
dings, with applications”, Journal of the ACM , Vol. 30, No. 4, 1983, pp.

Chapter 21 Graph Layouts 391

709–728.

9. T. Lengauer, “Upper and lower bounds on the complexity of the min-cut
linear arrangement problem on trees”, SIAM J. Alg. Discrete Methods,
Vol. 3, 1982, pp. 99–113.

10. F. Makedon and I. Sudborough, “Graph layout problems”, Surveys in Com-
puter Science, ed. H. Maurer, Bibliographisches Institut, Zurich, 1984,
pp. 145–192.

11. Z. Miller, “The bandwidth of caterpillar graphs”, Congressus Numeran-
tium, Vol. 33, 1981, pp. 235–252.

12. A. Rosenberg and L. Snyder, “Bounds on the cost of data encodings”,
Mathematical Systems Theory , Vol. 12, 1978, pp. 9–39.

13. C. Thompson, “Area-time complexity for VLSI”, Eleventh Annual ACM
Symposium on Theory of Computing , 1979.

14. J. Ullman, Computational Aspects of VLSI , Computer Science Press, Rock-
ville, Md., 1984.

15. M. Yannakakis, “A polynomial algorithm for the min cut linear arrange-
ment of trees”, Journal of the ACM , Vol. 32, 1985, pp. 950–959.

Exercises

1. Show that if a graph G has a vertex of degree k, then B(G) ≥ �k/2�.
2. Show that B(K4 − e) ≥ 2.

3. Find the bandwidth of the following graph.

392 Applications of Discrete Mathematics

4. Show that
a) κ(P k

n) = k. b) β(P k
n) = �n/k�.

c) |E(P k
n)| = 1

2k(2n − k − 1).

5. Consider the following graph G. If f is a numbering of G obtained by a
level algorithm with the indicated vertex v as the root, then what is the
smallest that dil(f) can be? What is the largest that dil(f) can be for such
an f?

�6. Construct a sequence of graphs {H(n): n = 1, 2, 3, . . .} for which the es-
timate for B(H(n)) produced by the level algorithm differs from the true
value of B(H(n)) by an amount that grows without bound as n approaches
infinity no matter which vertex in H(n) is chosen as a root. Hint: Use the
graphs L(n) described in the text by pasting them together somehow.

7. Use Algorithm Cycle-Tree to construct a dilation 3 map f : C19 → T ,
where T is the tree in the following figure.

8. Construct layouts of K5 and K6 into G2 (obeying the assumptions of the
Thompson grid model) with the smallest area you can manage.

9. Show that
a) S(Pn) = n − 1. b) S(Cn) = 2(n − 1).
c) S(K1,n) = �n2/4	. d) S(Kn) = n(n2 − 1).

10. Show that if a graph G has a vertex of degree k, then c(G) ≥ �k/2�.
11. Show that

a) c(Pn) = 1. b) c(Cn) = 2.
c) c(K1,n) = �n/2	. d) c(Kn) = �n2/4	.

Chapter 21 Graph Layouts 393

12. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

which has a band of 5 diagonals above and below the main diagonal which
enclose all the 1s.

a) Find a row and column permutation (the same permutation for both
rows and columns) of A which results in a matrix A′ requiring a band of
only 4 such diagonals.

b) Find the graph G(A), and show that B(G(A)) = 4.

13. Show that if a graph G on n vertices has a vertex of degree k with k even,
then S(G) ≥ k

2 (k + 2).

14. Show that if the level algorithm is applied to Tk (the complete binary tree
on k levels with 2k − 1 vertices) with the degree 2 vertex as the root, then
the biggest possible dilation that could result is 2k − 2k−2 − 1. What is the
smallest value?

Computer Projects

1. Write a program which takes a tree T and produces a numbering of T with
as small a dilation as you can manage. Note: Do not try to write a program
which will calculate the exact smallest possible dilation numbering. There
are theoretical reasons why such a program is likely to take much too long
to run when the number of vertices in T is large. Instead of trying to write
such a program, just develop some sensible heuristic idea and make it the
foundation of your program.

2. Write a program which takes a tree T and produces a numbering f of T
for which sum(f) is as small as you can manage.

3. Write a program which takes a tree T and produces a numbering f of T
for which value(f) is as small as you can manage.

Note: In Projects 2 and 3, there are programs to calculate the smallest possible
sum(f) and value(f) which are reasonably time efficient, but developing such
a program is quite ambitious. Again, try to develop some sensible heuristic.

