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Applications of
Subgraph Enumeration

Author: Fred J. Rispoli, Department of Mathematics, Dowling College.

Prerequisites: The prerequisites for this chapter are counting, probability,
graphs, and trees. See Sections 5.1, 5.3, and 6.1, and Chapters 9 and 10 of
Discrete Mathematics and Its Applications.

Introduction
Many applications of graph theory involve enumerating subgraphs to determine
the number of subgraphs satisfying various properties, or to find a subgraph
satisfying various properties. Some interesting examples are:

Example 1 How many distinct paths are there joining locations v1 to v3 in
the transportation network represented by the graph in Figure 1? Given the
length, l, and cost, c, of each edge, as displayed in Figure 1, does there exist a
path joining v1 to v3 with total length 15 or less, and total cost $40 or less?

Example 2 How many different isomers are there of the saturated hydro-
carbons C5H12?
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Figure 1. A transportation network.

Example 3 How many ways are there to construct an electrical network
which connects all of the nodes in the network and uses the smallest number of
wires possible?

Example 4 A salesman wishes to visit a number of cities and return to
the starting point in such a way that each city is visited exactly once. In how
many ways can this be done? If a route is selected at random, what is the
probability that two given cities are visited in succession? Given the distances
between cities, what route should be chosen so that the total distance covered
is as short as possible?

In this chapter we will discuss how to solve these problems, and other
similar problems. The approach is to define each problem in terms of subgraphs
of Kn, the complete graph on n vertices, and then derive a method to generate
and count the set of all subgraphs of Kn satisfying the required conditions. In
particular, we will count the number of simple paths joining any pair of vertices
in Kn, the number of spanning trees in Kn, the number of Hamilton circuits
in Kn, and the number of perfect matches in Kn. These counts will then be
used to determine the algorithmic complexity of exhaustive search procedures,
to compute various probabilities, and to solve some counting problems.

Counting Paths
We begin by discussing paths and enumeration problems involving paths. Given
any graph G = (V, E) and a positive integer n, a path of length n from vertex u
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to vertex v is a sequence of edges e1, e2,. . . , en of E such that e1 = {x0, x1},
e2 = {x1, x2},. . . , en = {xn−1, xn} where x0 = u and xn = v. A path is simple
if it does not contain the same edge more than once.

Since any path of a graph G = (V, E) consists of a subset of vertices of V
and a subset of edges of E, a path is a subgraph of G. We will only consider
simple paths in this chapter, and will omit the term “simple”.

Theorem 1 and its proof allow us to solve Example 1 of the introduction.
We use the notation

P (n, r) = n(n − 1)(n − 2) . . . (n − r + 1) if r > 0,

and P (n, 0) = 1.

Theorem 1 Given any two vertices in Kn, the complete graph with n ver-
tices, the number of paths joining them is

n−1∑
k=1

P (n − 2, k − 1) = O(nn−2).

Proof: Let Kn have vertex set V = {v1, v2, . . . , vn} and let vi and vj be any
pair of vertices in Kn. We count the number of paths joining vi to vj of length k,
by establishing a one-to-one correspondence from the set of paths joining vi to vj

of length k to the set of (k+1)-permutations of the set {1, 2, . . . , n} which begin
with i and end with j.

Given any path P of length k joining vi to vj , to obtain a (k + 1)-
permutation simply list the subscripts of the vertices that P visits as it is
traversed from vi to vj . Conversely, let i1i2 . . . ik+1 be a (k +1)-permutation of
{1, 2, . . . , n} such that i1 = i and ik+1 = j. The corresponding path P is made
up of edges {vis , vis+1}, for s = 1, 2, . . . , k. Since every path joining vi to vj of
length k corresponds to a unique (k +1)-permutation of {1, 2, . . . , n} beginning
with i and ending with j, and every (k + 1)-permutation of {1, 2, . . . , n} which
begins with i and ends with j of length k corresponds to a unique path joining vi

to vj , the correspondence between these two sets is one-to-one. The number
of (k + 1)-permutations of {1, 2, . . . , n} which begin with i and end with j is
P (n− 2, k − 1). Thus the total number of paths joining vi to vj is obtained by
summing P (n − 2, k − 1) as k varies from 1 to n − 1.

To obtain the big-O estimate, note that

P (n − 2, k − 1) = (n − 2)(n − 3) . . . (n − k) ≤ nn . . . n = nk−1.

Hence,

n−1∑
k=1

P (n − 2, k − 1) ≤ n0 + n1 + · · · + nn−2 = O(nn−2).
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The proof of Theorem 1 indicates how to enumerate all paths joining any
pair of vertices in Kn by generating permutations. (A method for generat-
ing permutations is given in Section 4.7 of the text.) This allows us to solve
Example 1 using an exhaustive search.

Solution to Example 1. By Theorem 1, there are

4∑
k=1

P (3, k − 1) = 1 + 3 + 6 + 6 = 16

paths joining v1 to v3. To determine if there is a path from v1 to v3 with total
length 15 or less and total cost $40 or less, we list each (k + 1)-permutation of
{1, 2, 3, 4, 5} beginning with 1 and ending with 3 corresponding to a path, along
with its total length and total cost for k = 1, 2, 3, 4.

Paths with 1 or 2 edges Paths with 3 edges

13 length: 15, cost: 50 1243 length: 18, cost: 75
123 length: 10, cost: 80 1423 length: 30, cost: 120
143 length: 18, cost: 55 1253 length: 27, cost: 117
153 length: 17, cost: 17 1523 length: 20, cost: 120

1453 length: 32, cost: 67
1543 length: 13, cost: 25

Paths with 4 edges

12453 length: 32, cost: 87
12543 length: 23, cost: 125
14253 length: 47, cost: 157
15243 length: 28, cost: 115
14523 length: 35, cost: 170
15423 length: 25, cost: 90

This shows that there is one path joining v1 to v3 which has total length 15
or less, and total cost $40 or less, namely the path corresponding to 1543.

Example 1 is an example of a shortest weight-constrained path problem,
which we now define.

Shortest Weight-Constrained Path Problem: Given positive in-
tegers W and L, and a weighted graph G = (V, E) with weights w(e)
and lengths l(e), which are both positive integers, for all e ∈ E. Is
there a path between two given vertices with weight ≤ W and length
≤ L?
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There is no known algorithm with polynomial complexity which solves the
shortest weight-constrained problem. (See [2] in the suggested readings for an
explanation why.) Thus, using an exhaustive search is a useful method for
solving such a problem, as long as n is not too large. Theorem 1 tells us
precisely just how large n can be. For example, suppose n = 10, and each path
along with its weight and length can be computed in 10−4 seconds of computer
time. Then, by Theorem 1, the are at most 108 paths to consider in K10. So
the problem can be solved in at most 108 · 10−4 = 104 seconds, or roughly 3
hours. Whereas if n = 20, the amount of computer time required is at most
2018 · 10−4 seconds, or roughly 8 · 1012 years.

A problem closely related to the above problem is the well-known shortest
path problem, defined as follows.

Shortest Path Problem: Given a weighted graph, find a path be-
tween two given vertices that has the smallest possible weight.

The shortest path problem may also be solved using an exhaustive search.
However, Dijkstra’s algorithm is a much better method. (See Section 7.6 of
the text for a description of the algorithm). This is true because Dijkstra’s
algorithm requires O(n2) operations (additions and comparisons) to solve the
problem. Whereas, if an exhaustive search is used, the number of additions
used to compute the weight of each path is O(n), and, by Theorem 1, there
are O(nn−2) such paths to examine. Thus, the number of additions required
to compute the weight of all paths is O(nn−1). This shows that Dijkstra’s
algorithm is much more efficient than an exhaustive search.

Counting Spanning Trees
In this section we shall study the enumeration of spanning trees. Recall that a
tree is a connected graph with no circuits. If G = (V, E) is a graph, a spanning
tree of G is a subgraph of G that is a tree containing every vertex of V .

Spanning trees were first used by the German physicist Gustav Kirchoff
who developed the theory of trees in 1847. Kirchoff used spanning trees to
solve systems of simultaneous linear equations which give the current in each
branch and around each circuit of an electrical network.

In 1857, the English mathematician Arthur Cayley independently discov-
ered trees when he was trying to enumerate all isomers for certain hydrocarbons.
Hydrocarbon molecules are composed of carbon and hydrogen atoms where each
carbon atom can form up to four chemical bonds with other atoms, and each
hydrogen atom can form one bond with another atom. A saturated hydrocar-
bon is one that contains the maximum number of hydrogen atoms for a given
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number of carbon atoms. Cayley showed that if a saturated hydrocarbon has n
carbon atoms, then it must have 2n + 2 hydrogen atoms, and hence has the
chemical formula CnH2n+2. His approach was to represent the structure of a
hydrocarbon molecule using a graph in which the vertices represent atoms of
hydrogen (H) and carbon (C), and the edges represent the chemical bonds be-
tween the atoms (see Figure 2). He then showed that any graph representing
a saturated hydrocarbon must be a tree. Thus, any graph representing the
saturated hydrocarbon CnH2n+2 must be a tree with n vertices of degree 4 and
2n + 2 vertices of degree 1.

When two molecules have the same chemical formula but different chemical
bonds they are called isomers. One can enumerate the isomers of CnH2n+2 by
enumerating the nonisomorphic trees with n vertices of degree 4 and 2n + 2 ver-
tices of degree 1. The problem may be simplified further by removing vertices
representing hydrogen atoms, thereby obtaining a subgraph called the carbon-
graph. The vertices of carbon-graphs all represent carbon atoms and the edges
represent chemical bonds between the carbon atoms. Given any graph repre-
senting a saturated hydrocarbon CnH2n+2, removing all vertices of degree 1
leaves a tree, namely, the carbon-graph, containing n vertices which all have
degree at most 4.

Conversely, given any tree T with n vertices such that every vertex has
degree at most 4, edges may be added to T to obtain a tree, T ′, in which all
of the original n vertices have degree 4. So T ′ represents a molecule with the
chemical formula CnH2n+2. Since any tree with n vertices such that every
vertex has degree at most 4 corresponds to a unique isomer with chemical
formula CnH2n+2, and vice versa, there is a one-to-one correspondence between
the isomers of CnH2n+2 and the nonisomorphic trees with n vertices such that
every vertex has degree at most 4. We shall exploit this fact to solve the problem
posed in Example 2.

Solution to Example 2: Figure 2 gives all nonisomorphic trees with 5 vertices
such that every vertex has degree 4 or less. The corresponding isomer is given
below each tree along with its name.

Cayley did not immediately succeed at obtaining a formula, in terms of n,
for the number of isomers of CnH2n+2. So he altered the problem until he was
able to obtain such a formula for trees satisfying various conditions. In 1889 he
discovered Theorem 2, known as Cayley’s Theorem, which states: the number
of spanning trees of Kn is nn−2. The proof we will give was discovered by
H. Prüfer in 1918. Several other completely different proofs are also known.
(See [5] in the suggested readings.) The idea behind the proof is to establish a
one-to-one correspondence from the set of all spanning trees of Kn to the set of
ordered (n − 2)-tuples (a1, a2, . . . , an−2), where each ai is an integer satisfying
1 ≤ ai ≤ n. Given any spanning tree T of Kn, we obtain an (n − 2)-tuple
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Figure 2. Trees and isomers.

as follows. Choose a vertex of degree 1 . (The existence of such a vertex is
proved in Exercise 5.) Assume the vertices are labeled v1, . . . , vn and remove
the vertex of degree 1 with with the smallest subscript, along with its incident
edge. Let a1 be the subscript of the unique vertex which was adjacent to the
removed vertex. Repeat this procedure on the remaining tree with n−1 vertices
to determine a2. Iterate this procedure until there are only two vertices left,
thereby obtaining the (n − 2)-tuple, (a1, a2, . . . , an−2).

Example 5 Find the 5-tuple which corresponds to the spanning tree given
in Figure 3.

Solution: Figure 3 corresponds to the 5-tuple (2, 3, 4, 3, 6). To see this, notice
that v1 is the vertex with the smallest subscript which has degree 1 and v2 is
adjacent to v1, thus a1 = 2. Now remove edge {v1, v2}. In the reduced graph,
v2 is the vertex with the smallest subscript which has degree 1. Vertex v3 is
adjacent to v2; thus a2 = 3. Now remove edge {v2, v3}. Iterating this procedure
gives the result.
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Figure 3. A spanning tree.

To obtain a spanning tree of Kn, given any (n−2)-tuple, begin with the list
{1, 2, . . . , n}. Find the smallest number, i, in the list but not in the (n−2)-tuple
and take the first number in the (n − 2)-tuple, a1. Then add the edge joining
the vertices vi and va1 . Remove i from the list and a1 from the (n−2)-tuple and
repeat the procedure. Iterate until there are only two numbers left in the list,
then join the vertices with these subscripts. The graph G thus obtained does
not contain any circuits. For if C is a circuit in G, let {u, v} be the last edge
in C adjoined to G. Then both u and v were included in an edge previously
adjoined to G. If the first time u was included in an edge adjoined to G, u
was from the list, then u was not in the tuple, and was crossed off the list. So
it may not be an endpoint of any edge subsequently adjoined to G. Thus u
must have been from the tuple the first time it was an endpoint of an edge
adjoined to G. Similarly, v must have been from the tuple the first time it was
an endpoint of an edge adjoined to G. Now let v1, v2, . . . , vk be the vertices
visited by C, where u = v1 and v = vk, as C is traversed from u to v without
passing through edge {u, v}. Since v1 was in the tuple when edge {v1, v2} was
adjoined to G, v2 must have been from the list. This implies v2 must have
been from the tuple when {v2, v3} is adjoined to G, hence, v3 is from the list
when {v2, v3} is adjoined to G. Similarly, v4 must have been from the list when
{v3, v4} was adjoined to G, and so on. But this implies that vk = v was from
the list when {vk−1, vk} was adjoined to G, a contradiction. Thus G can not
have any circuits. Exercise 6 shows that any graph with n vertices, n−1 edges,
and no circuits must be a tree. Thus G is a spanning tree of Kn. We have
shown that every spanning tree of Kn corresponds to a unique (n − 2)-tuple
and every (n−2)-tuple corresponds to a unique spanning tree of Kn. Therefore,
there is a one-to-one correspondence between these two sets.

Example 6 Find the spanning tree of K7 which corresponds to the 5-tuple
(7, 2, 1, 2, 1).

Solution: The spanning tree is given in Figure 4. To see why, start with the
list {1, 2, 3, 4, 5, 6, 7}. The number 3 is the smallest number in the list but not
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Figure 4. The spanning tree corresponding to (7,2,1,2,1).

in (7, 2, 1, 2, 1), and 7 is the first number in the 5-tuple. So we adjoin edge
(v3, v7). Now remove 3 from the list to obtain the new list {1, 2, 4, 5, 6, 7}, and
remove 7 from the 5-tuple to obtain the 4-tuple (2, 1, 2, 1). The number 4 is the
smallest number in the list but not in (2, 1, 2, 1), and 2 is the first number in
the 4-tuple. So we adjoin edge (v4, v2). Iterate this procedure until there are
only two numbers left, namely 1 and 7. Now adjoin edge (v1, v7) to obtain the
tree.

Theorem 2 Cayley’s Theorem The number of spanning trees of Kn is
nn−2.

Proof: Construct the one-to-one correspondence outlined above from the set
of all spanning trees of Kn with vertices {v1, v2, . . . , vn}, to the set of all (n−2)-
tuples (a1, a2, . . . , an−2), where each ai is an integer satisfying 1 ≤ ai ≤ n. The
count is obtained by observing that there are nn−2 such (n − 2)-tuples, since
there are n ways to select each ai.

Examples 7 and 8 involve a direct application of Cayley’s Theorem.

Example 7 How many ways are there to construct an electrical network
with 12 nodes which connects all of the nodes using the fewest possible number
of wires?

Solution: Any electrical network consisting of 12 nodes and wires connect-
ing the nodes can be represented by a subgraph of K12, where each node is
represented by a vertex, and each wire is represented by an edge. The graph
representing any electrical network which connects all 12 nodes and uses the
fewest number of wires, must be a connected graph with no circuits. Hence, it
must be a spanning tree of K12. By Cayley’s Theorem, there are 1210 spanning
trees of K12. Thus, there are 1210 ways to construct the electrical network.
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Example 8 Determine the probability that a spanning tree selected at ran-
dom from Kn does not contain a given edge e.

Solution: Exercise 22 shows that the number of spanning trees of the graph
obtained by deleting the edge e from Kn is (n−2)nn−3. By Cayley’s Theorem,
the number of spanning trees of Kn is nn−2. So the probability is

(n − 2)nn−3

nn−2
=

n − 2
n

= 1 − 2
n

.

The proof of Theorem 2 describes how the set of all spanning trees of Kn

may be generated by generating (n− 2)-tuples. We now describe an algorithm
which generates n-tuples (a1, a2, . . . , an), where each ai is an integer satisfying
r ≤ ai ≤ s, where r and s are any integers satisfying r < s. The algorithm
is based on the lexicographic ordering of n-tuples. In this ordering, the n-
tuple (a1, a2, . . . , an) precedes the n-tuple (b1, b2, . . . , bn) if, for some k with
1 ≤ k ≤ n, a1 = b1, a2 = b2, . . . , ak−1 = bk−1, and ak < bk. In words, an n-
tuple precedes a second n-tuple if the number in this n-tuple in the first position
where the two n-tuples disagree is smaller than the number in that position in
the second n-tuple. For example, the 5-tuple a = (2, 3, 1, 5, 7) precedes the
5-tuple b = (2, 3, 1, 6, 2), since a1 = b1, a2 = b2, a3 = b3, but a4 < b4.

Example 9 What is the next largest 5-tuple in lexicographic order after
(3, 2, 4, 7, 7) in the set of all 5-tuples (a1, a2, a3, a4, a5), with 1 ≤ ai ≤ 7?

Solution: To find the next largest 5-tuple, find the largest subscript i such that
ai < 7, which is i = 3. Then add one to a3. This gives the 5-tuple (3, 2, 5, 7, 7).
Any other 5-tuple (a1, a2, a3, a4, a5) that is larger than (3, 2, 5, 7, 7) satisfies
either a1 > 3, or a1 = 3 and a2 > 2, or a1 = 3, a2 = 2, and a3 > 5. In every
case (a1, a2, a3, a4, a5) is larger than (3, 2, 4, 7, 7). Therefore, (3, 2, 5, 7, 7) is the
next largest 5-tuple.

Algorithm 1 displays the pseudocode description for finding the next largest
n-tuple after an n-tuple that is not (s, s, . . . , s), which is the largest n-tuple.

Next we look at a problem for which there is no known algorithm. Given
any weighted graph G and any spanning tree T of G, define the range of T to
be the weight of the edge in T with the largest weight minus the weight of the
edge in T with the smallest weight.

Example 10 Use an exhaustive search to find a spanning tree with the
smallest possible range for the graph in Figure 5.
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ALGORITHM 1. Generating the next largest n-
tuple in lexicographic order.

procedure next n-tuple ((a1, a2, . . . , an): n-tuple of integers
between r and s, r < s, not equal to (s, s, . . . , s))

j := 1
for i := 1 to n

if ai < s then j := i
{j is the largest subscript with aj < s}
aj := aj + 1
{(a1, a2, . . . , an) is now the next largest n-tuple}

Figure 5. A weighted graph.

Solution: By Cayley’s Theorem there are 42 = 16 spanning trees of K4.
We list each 2-tuple corresponding to a spanning tree of K4, along with the
corresponding range of each spanning tree:

(1,1) range: 6 (2,1) range: 6 (3,1) range: 8 (4,1) range: 9
(1,2) range: 9 (2,2) range: 7 (3,2) range: 9 (4,2) range: 3
(1,3) range: 3 (2,3) range: 6 (3,3) range: 8 (4,3) range: 5
(1,4) range: 4 (2,4) range: 7 (3,4) range: 9 (4,4) range: 6

This shows that the spanning trees corresponding to (1, 3) or (4, 2), having
range 3, are spanning trees with the smallest possible range.

Another important problem involving spanning trees is the well known
minimal spanning tree problem.

Minimal Spanning Tree Problem: Given a weighted graph, find
a spanning tree with the smallest possible weight.
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This problem may also be solved using an exhaustive search. However
this approach should be avoided in this case since there are several well known
algorithms which are much more efficient. For example, Prim’s algorithm is
known to find a minimal spanning tree for a graph with n vertices using O(n2)
comparisons and no additions. (See Section 10.5 of Discrete Mathematics and
Its Applications for a description of Prim’s algorithm.) Whereas if an exhaustive
search were used, the number of additions required to compute the weights of
each spanning tree is n − 2 = O(n). By Cayley’s Theorem, this must be
performed at most nn−2 = O(nn−2) times. Thus, the number of additions
required to compute the weights of the spanning trees of Kn is O(nn−1). This
shows that Prim’s algorithm is much more efficient than an exhaustive search.

Counting Hamilton Circuits
Next we discuss Hamilton circuits and some related problems. Given any graph
G = (V, E), a path is called a circuit if it begins and ends at the same vertex.
A circuit x0, x1, . . . , xn, where x0 = xn, is called a Hamilton circuit if V =
{x0, x1, . . . , xn} and xi 	= xj , for 0 ≤ i < j ≤ n.

The terminology is due to the Irish mathematician Sir William Rowan
Hamilton, who was a child prodigy, and is famous for his contributions in alge-
bra. Perhaps his most famous discovery was the existence of algebraic systems
in which the commutative law for multiplication (ab = ba) does not hold. His
algebra of quaternions , as it is now known, can be expressed in terms of Hamil-
ton circuits on the regular dodecahedron (a regular solid with 20 vertices and 12
regular pentagons as faces). Hamilton’s discovery lead to a puzzle in which the
vertices of the dodecahedron are labeled with different cities of the world. The
player is challenged to start at any city, travel “around the world”, and re-
turn to the starting point, visiting each of the other 19 cities exactly once. In
the puzzle that was marketed in 1859, the player must find a Hamilton circuit
starting with five given initial cities.

An important problem involving Hamilton circuits is the traveling salesman
problem. In such problems, a salesman wishes to visit a number of cities and
return to the starting point, in such a way that each city is visited exactly once,
and the total distance covered is as small as possible. The problem may also
be stated using graph terminology.

Traveling Salesman Problem: Given a weighted graph, find a
Hamilton circuit that has the smallest possible weight.

The origin of the traveling salesman problem is somewhat obscure. George
Dantzig, Ray Fulkerson, and Selmer Johnson were among the first mathemati-
cians who studied the problem in 1954. They showed that a certain Hamilton
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circuit of a graph representing 49 cities, one in each of the 48 contiguous states
and Washington D.C., has the shortest distance. (See [1] in the suggested
readings.) Since then, many researchers have worked on the problem. How-
ever, there is no known algorithm having polynomial complexity which solves
the traveling salesman problem. On the other hand, there has been a lot of
progress towards finding good algorithms which either solve the problem, or
find approximate solutions to the problem. (This problem is also studied in
another chapter of this book. In addition, see [4] in the suggested readings for
a comprehensive discussion.)

Theorem 3 and its proof allow us to solve the traveling salesman problem
using an exhaustive search, as well as determine probabilities concerning Hamil-
ton circuits selected at random. To enumerate the Hamilton circuits in Kn, we
establish a one-to-one correspondence that characterizes the set of all Hamilton
circuits of Kn in terms of permutations. The idea behind the correspondence
is to label the vertices of Kn, using v1, v2, . . . , vn, and then associate a per-
mutation of 1, 2, . . . , n to every Hamilton circuit using the subscripts of the
vertices vi.

For example, consider the circuit C given in Figure 6. We can associate the
permutation 13425 with C. However, the permutations 34251, 42513, 25134,
51342, and the permutations 15243, 52431, 24315, 43152, 31524 all give rise to
the same circuit, C. To obtain a one-to-one correspondence, we will pick an
arbitrary starting point v1, and associate the permutation beginning with 1, in
which the second number is smaller than the last. According to this rule, 13425
is the only permutation associated to C.

Figure 6. A circuit C.

Theorem 3 The number of Hamilton circuits in Kn is 1
2 (n − 1)!.

Proof: We show that the set of all Hamilton circuits in Kn is in one-to-one
correspondence with the set of all permutations σ of {1, 2, . . . , n} beginning
with 1, such that the second number of σ is smaller than the last. Let C be
any Hamilton circuit in Kn. Take the vertex v1 and let vj and vk be the two
vertices which are joined to v1 by edges in C. Clearly j 	= k, so assume j < k.
To obtain the permutation σ corresponding to C let the ith element of σ be
the subscript of the ith vertex visited by C as C is traversed by beginning at
v1 and proceeding in the direction such that v1 is followed by vj .



254 Applications of Discrete Mathematics

Conversely, given any permutation σ of {1, 2, . . . , n} beginning with 1,
such that the second number of σ is smaller than the last, the Hamilton circuit
corresponding to σ is obtained by starting at v1, then visiting the vertices
{v2, v3, . . . , vn} in the order prescribed by σ.

The number of permutations of {1, 2, 3, . . . , n} beginning with 1, such that
the second number is smaller than the last number, is equal to the number
of ways to choose the second and last numbers times the number of ways to
choose the remaining n− 3 numbers. Note that there is only one way to choose
the first number since it must be 1. Moreover, when we choose two numbers,
say a and b, one is larger than the other, so there is only one way to place
them as second and last elements in the permutation. Therefore, the count is
C(n − 1, 2)(n − 3)! = 1

2 (n − 1)!.

We are now ready to answer the questions posed in Example 4 of the
introduction.

Example 11 A salesman wishes to visit all the locations listed in Figure 7
and return to the starting point in such a way that each city is visited exactly
once. If such a route is selected at random, what is the probability that the
route visits v1 and v2 in succession?

Figure 7. Salesman’s network.

Solution: The number of Hamilton circuits which visit v1 and v2 in succession
is obtained by observing that if a Hamilton circuit passes through v1 followed
by v2, then there are three ways to visit the next vertex, two ways to visit the
next, and one way to visit the last. Thus, there are a total of 3 · 2 · 1 = 6
Hamilton circuits. By Theorem 3, there are 1

24! = 12 Hamilton circuits in K5.
So the probability is 6/12 = 1/2.

Example 12 Use an exhaustive search to find a Hamilton circuit of smallest



Chapter 14 Applications of Subgraph Enumeration 255

weight in the graph of Figure 7 by generating the permutations of {1, 2, 3, 4, 5}
which begin with 1, such that the second number is smaller than the last.

Solution: By Theorem 3, there are 1
24! = 12 Hamilton circuits in K5. We

give each permutation along with its corresponding weight.

12345 weight: 20 12354 weight: 18 12435 weight: 16
12453 weight: 16 12534 weight: 13 12543 weight: 15
13245 weight: 18 13254 weight: 15 13425 weight: 13
13524 weight: 11 14235 weight: 16 14325 weight: 15

This shows that the Hamilton circuit v1, v3, v5, v2, v4, v1, having weight 11,
is a Hamilton circuit with the smallest possible weight.

Theorem 3 tells us that for a the graph K10 there would be 1
29! = 181, 440

different Hamilton circuits. If each circuit could be found and its weight com-
puted in 10−4 seconds, it would require approximately 3 minutes of computer
time to solve a traveling salesman problem with 10 vertices. So an exhaustive
search is a reasonable way to solve the problem. However, under the same as-
sumption, a problem with 25 vertices would require (3 · 1023) · 10−4 = 3 · 1019

seconds, or roughly 9.5 · 1011 years.

Counting Perfect Matches
A class of ten students must be paired off to form five study groups. How many
ways can the study groups be formed? After a preliminary examination the
instructor assigns a rating from 1 to 10 to each pair such that the lower the
rating, the more productive the pair, in the opinion of the instructor. How
can the students be paired so that the sum of the ratings of the five pairs
is minimal, thus maximizing the productivity of the class? These questions
concern a certain type of matching, called a perfect matching, which we now
define.

Definition 1 A matching in a graph G = (V, E) is a subset of edges, M ,
contained in E such that no two edges in M have a common endpoint. A
matching M is called perfect if every vertex of G is an endpoint of an edge
of M .

For example, the set of all perfect matches of the graph given in Figure 8
are the matches

M1 = {{1, 2}, {3, 4}} M2 = {{1, 3}, {2, 4}} M3 = {{1, 4}, {2, 3}}.
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Figure 8. Finding perfect matchings.

Theorems 1, 2, and 3 were all proved by establishing a one-to-one corre-
spondence. The following theorem uses mathematical induction to count the
perfect matches in Kn.

Theorem 4 The number of perfect matches in Kn is 0 if n is odd and
(n − 1)(n − 3) . . . 5 · 3 · 1 = O(nn/2) if n is even.

Proof: We will prove this theorem using mathematical induction. If n = 1,
there is no perfect matching and if n = 2, then there is only 1 perfect matching.

For the induction step, assume the theorem holds for all complete graphs
with k vertices, where k < n. It is clear that Kn has no perfect matching if n
is odd, so we assume n is even. We count the number of perfect matches in Kn

by considering a vertex v1, which can be matched to any of the other n − 1
vertices. Suppose v1 is matched to v2. Then remove v1, v2, and all the edges
incident to v1 and v2, to obtain the graph Kn−2 with vertices {v3, v4, . . . , vn}.
By the inductive assumption, since n−2 is even, the number of perfect matches
in Kn−2 is (n−3)(n− 5) · · ·5 ·3 ·1. Since there are n−1 ways to match v1, and
for each of these there are (n−3)(n−5) · · ·5 ·3 ·1 ways to match the remaining
n − 2 vertices, the total number of perfect matches is

(n − 1)(n − 3) . . . 5 · 3 · 1 ≤ nn . . . n = O(nn/2).

Theorem 4 can be used to answer the question posed at the beginning of
this section.

Example 13 How many ways can a class of 10 students be paired off to
form 5 study groups?

Solution: The number of study groups is equal to the number of perfect
matches in K10. By Theorem 4, this number is 9 · 7 · 5 · 3 · 1 = 945.

Example 14 Use an exhaustive search to find a perfect matching of minimal
weight for the graph given in Figure 9 by listing all perfect matches along with
their weights.
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Figure 9. A weighted graph.

Solution: By Theorem 4, there are 5 · 3 · 1 = 15 perfect matches in K6. We
shall list the edges in each perfect matching of K6 along with the weight of the
matching.

{{1, 2}, {3, 4}, {5, 6}} weight: 7 {{1, 4}, {3, 5}, {2, 6}} weight: 9
{{1, 2}, {3, 5}, {4, 6}} weight: 4 {{1, 5}, {2, 3}, {4, 6}} weight: 6
{{1, 2}, {4, 5}, {3, 6}} weight: 10 {{1, 5}, {2, 4}, {3, 6}} weight: 8
{{1, 3}, {4, 5}, {2, 6}} weight: 8 {{1, 5}, {3, 4}, {2, 6}} weight: 7
{{1, 3}, {2, 4}, {5, 6}} weight: 6 {{1, 6}, {3, 4}, {2, 5}} weight: 8
{{1, 3}, {2, 5}, {4, 6}} weight: 6 {{1, 6}, {2, 3}, {4, 5}} weight: 9
{{1, 4}, {2, 3}, {5, 6}} weight: 11 {{1, 6}, {2, 4}, {3, 5}} weight: 5
{{1, 4}, {2, 5}, {3, 6}} weight: 13

This shows that the perfect matching {{1, 2}, {3, 5}, {4, 6}}, with weight 4
is a perfect matching of the smallest possible weight.

Example 14 is an example of a perfect matching problem, defined as follows.

Perfect Matching Problem: Given a weighted graph, find a perfect
matching that has the smallest possible weight.

The proof of Theorem 4 indicates how to recursively generate the set of
perfect matches of Kn. Specifically, first generate all perfect matches of K2,
use these to generate all those of K4, use the perfect matches of K4 to generate
those of K6, and so on.

Example 15 Use the perfect matching {{1, 2}, {3, 4}} in K4 to generate 5
perfect matches of K6.

Solution: First, replace 1 by 5 and match 1 to 6 to obtain the perfect matching
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{{5, 2}, {3, 4}, {1, 6}}
in K6. Next, replace 2 by 5 and match 2 to 6 to obtain the perfect matching

{{1, 5}, {3, 4}, {2, 6}}
in K6. Iterate this procedure two more times to get the perfect matches

{{1, 2}, {5, 4}, {3, 6}}
{{1, 2}, {3, 5}, {4, 6}}.

The fifth perfect matching is obtained by matching 5 to 6, giving

{{1, 2}, {3, 4}, {5, 6}}.

The procedure used in the solution of Example 16 is generalized in Algo-
rithm 2, which displays the pseudocode description for finding the n−1 perfect
matches of Kn, given a perfect matching of Kn−2, where n is an even integer,
n ≥ 4.

ALGORITHM 2. Generating n − 1 perfect matches
of Kn, given a perfect matching of Kn−2.

procedure perfect matches ({{a1, a2}, {a3, a4}, . . . ,
{an−3, an−2}}: a perfect matching of Kn−2, n an even
integer, n ≥ 4)

for i := 1 to n − 1
begin

for j := 1 to n − 2
if j = i then bj := n − 1 and bn−1 := ai

else bj := aj

if i = n − 1 then bn−1 := n − 1
Mi := {{b1, b2}, {b3, b4}, . . . , {bn−1, n}}

end {Mi is a perfect matching of Kn}

Using Algorithm 2 one can solve a perfect matching problem using an
exhaustive search. How efficient is this? The number of additions required to
compute the weight of each perfect matching is n/2−1 = O(n). By Theorem 4,
the weights of (n − 1)(n − 3) · · · 5 · 3 · 1 = O(nn/2) perfect matches must be
computed. So the number of additions required to compute the weights of all



Chapter 14 Applications of Subgraph Enumeration 259

the perfect matches in Kn is O(n
n
2 +1). There are more efficient ways to solve a

perfect matching problem. For example, [3] in the suggested readings describes
an algorithm that solves the perfect matching problem which requires O(n3)
operations (additions and comparisons).

Suggested Readings

1. G. Dantzig, D. Fulkerson, and S. Johnson, “Solution of a Large-Scale Trav-
eling Salesman Problem”, Operations Research, volume 2 (1954), 393–410.

2. M. Garey and D. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness, W. H. Freeman, New York, 1979.

3. E. Lawler, Combinatorial Optimization: Networks and Matroids, Dover
Publications, Mineola, N.Y., 2000.

4. E. Lawler, A. Lenstra, A. Rinnooy Kan, and D. Shmoys, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, John
Wiley & Sons, Hoboken, N.J., 1991.

5. J. Moon, “Various Proofs of Cayley’s Formula for Counting Trees”, A Sem-
inar on Graph Theory, (ed. F. Harary), Holt, Rinehart and Winston, New
York, 1967, 70–78.

Exercises

1. For the graph K8, determine the number of
a) paths joining any pair of vertices. b) spanning trees.
c) Hamilton circuits. d) perfect matches.

2. For each of the following trees, determine the 5-tuple described in the proof
of Cayley’s Theorem.

a) b)
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3. For each of the following 5-tuples, construct the corresponding spanning
tree of K7 as described in the proof of Cayley’s Theorem.

a) (7, 2, 4, 4, 1)
b) (2, 2, 2, 4, 6).

4. List all the perfect matches of K6 by first listing all the perfect matches
of K4 and then using these to obtain the perfect matches of K6. (See
Example 15.)

5. Show that any tree with at least two vertices has at least two vertices of
degree 1.

6. Show that any graph with n vertices, n-1 edges, and no cycles is a tree.

7. How many different isomers do the saturated hydrocarbon C6H14 have?

8. For the following graph determine if there is a path from A to C which has
total length 40 or less and total cost $45 or less.

9. For the following graph
a) find a spanning tree with the smallest possible range.
b) find a Hamilton circuit with the smallest possible weight.
c) find a perfect matching with the smallest possible weight.
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10. A doctor, who lives in village A, wishes to visit his patients who live in the
four villages B, C, D, and E, as illustrated in the following graph. Find a
route for him which involves the least possible total distance.

11. Let K8 have the vertex set V = {v1, v2, . . . , v8}. Determine the probability
that a path joining v1 to v5 selected at random from K8 contains fewer
than five edges.

12. Let Kn have vertex set V = {v1, v2, . . . , vn}. Determine the probability
that a spanning tree selected at random from Kn contains a vertex having
degree n − 1.

13. Let Kn have vertex set V = {v1, v2, . . . , vn} where n ≥ 4. Determine the
probability that a Hamilton circuit selected at random from Kn visits v1,
v2, and v3 in succession.

14. Let Kn have vertex set V = {v1, v2, . . . , vn} and assume n is even with
n ≥ 6. Determine the probability that a perfect matching selected at
random from Kn contains the edges {v1, v2} and {v3, v4}.

15. Determine the number of perfect matches in the complete bipartite graph
Kn,n.

16. Explain how the perfect matches of the bipartite graph Kn,n may be gen-
erated on a computer.

17. Given a perfect matching M of Kn, where n is even, determine how many
spanning trees of Kn contain M .

18. a) Let W = {w1, w2, . . . , wn} be a set of n real numbers and let r be an
integer where r < n. Describe a procedure to find a subset of r numbers
with the smallest possible sum, by checking all possible subsets of size r.

b) Give a formula in terms of n and r which indicates how many candi-
dates must be checked to solve the problem.
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19. a) Give an algorithm that is more efficient than the exhaustive approach
for the problem described in Exercise 18.

b) Provide a big-O estimate for your algorithm to prove that the algo-
rithm is more efficient than the algorithm of Exercise 18.

20. Determine the largest value of n for which all of the Hamilton circuits of Kn

may be generated in less than 10 minutes of computer time, assuming the
computer requires 10−4 seconds of computer time to generate one Hamilton
circuit and compute its weight.

21. How many spanning trees does the complete bipartite graph K2,n have?

22. Let Kn − e be the graph obtained by deleting the edge e from Kn. Show
that the number of spanning trees of Kn−e, for any edge e, is (n−2)nn−3.

�23. Let Kn have vertex set V = {v1, v2, . . . , vn}. Show that the number of
spanning trees of Kn such that vertex vi has degree di in the spanning tree
is

(n − 2)!
(d1 − 1)!(d2 − 1)! . . . (dn − 1)!.

�24. Describe a method which generates the set of all spanning trees of Kn such
that vertex vi has degree di.

��25. Let Km,n be the complete bipartite graph with vertices V = V1∪V2, where
V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn}. Show that the number of
spanning trees of Km,n such that vertex ui has degree di and vertex vj has
degree fj is

(m − 1)!(n − 1)!
(d1 − 1)! . . . (dm − 1)!(f1 − 1)! . . . (fn − 1)!

.

Computer Projects

1. Let K10 have vertex set V = {v1, v2, . . . , v10}. Write a computer program
that takes as input the weights of the edges of K10 and finds a path of
length 3 of smallest possible weight that joins a given pair of vertices.

2. Write a program that generates all the Hamilton circuits of K6.

3. Write a computer program that generates all the perfect matches of K8.


