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ABSTRACT
In this paper, we propose a new perceptual model for bal-
anced multiwavelet (BMW) transforms. The latter transform
achieves simultaneous orthogonality and symmetry without
requiring any input prefiltering. The proposed model is
derived using multiresolution domain extensions of Chou’s
model. The proposed model depends only on the image ac-
tivity and not the multifilter sets used by the transform, unlike
those developed for scalar wavelets. The perceptual redun-
dancy, present in the image, is efficiently quantified through a
just-noticeable distortion (JND) profile. In this model, a vis-
ibility threshold of distortion is assigned to each BMW sub-
band coefficient. Therefore, perceptually insignificant sub-
band components can be clearly disc requirement often en-
countered in watermarking applications.riminated from per-
ceptually significant ones. For instance, this discrimination
can be constructively used to achieve the imperceptibility

1. INTRODUCTION

It is generally believed that the performance of most cur-
rent watermarking systems is not close enough to the funda-
mental limit on robust watermark embedding rates at which
high perceptual image quality is maintained. To support
real applications demanding high-capacity and robust water-
marking, more sophisticated perceptual image models are re-
quired. Borrowing results from image coding and compres-
sion [2, 3, 1], a seemingly unrelated topic to watermarking,
perceptual models have been derived to reach the optimality
bound from perceptual watermarking systems. Watson [2]
defines perceptually-optimal quantization matrices for JPEG
standard. Chou and Li [1] propose a JND profile for an opti-
mal image subband coder. Watson et al. [3] define visibility
thresholds of quantization noise for linear phase 9/7 wavelet
filters. These models have been successfully used to achieve
imperceptible watermark embedding [4]. Kundur and Hatzi-
nakos [5] propose a model to classify salient regions in host
images for watermark embedding. Lu et al. [6] employ JND
in the wavelet domain to obtain transparent watermarks of
maximum strength. Barni et al. [7] exploit the characteristics
of the human visual system (HVS), as well as the masking ef-
fect, to estimate the proper watermark signal strength for car-
rying out watermark embedding through wavelet coefficient
modulation. To improve the performance of spread-spectrum
watermarking, Kutter and Winkler [8] propose a perceptual
model that takes into account the contrast sensitivity and tex-
ture masking. The goal of this paper is to develop an efficient,
yet simple, perceptual model based on a subband decompo-
sition that is specifically adopted to watermark embedding
using balanced multiwavelet transforms.

2. A PERCEPTUAL MODEL FOR BALANCED
MULTIWAVELET TRANSFORMS

We will give a brief overview of Chou’s model and show its
relevance to the balanced multiwavelet transforms 1 through
the use of subbands’ modeling. Chou and Li [1] propose
a JND or minimally noticeable distortion (MND) profile to
quantify the ”perceptual redundancy”. The JND profile pro-
vides a visibility threshold of distortion for each image being
analyzed. The latter indicates the level below which distor-
tions due to watermark embedding are rendered impercepti-
ble. The JND profile incorporates two major factors, known
to be influential in the human visual perception; namely the
”background luminance” and ”texture masking effect”. The
purpose of the JND profile is to guide the watermark embed-
ding in the BMW domain. Therefore, this profile must be
decomposed into component JND/MND profiles of differ-
ent frequency/orientation subbands. With the decomposed
profile, watermark data will be adaptively embedded into
subband coefficients according to their ”perceptual signifi-
cance”.

2.1 Perceptual Redundancies

The imperfections and the inconsistency in sensitivity inher-
ent to the human visual system (HVS) allow for ”perceptual
redundancies”. Psychovision studies [9] indicate that the vis-
ibility threshold of a particular stimulus depends on many
factors. There are primarily two major factors that affect the
error visibility threshold of each pixel 2. These two factors
are:
• Luminance Contrast: Human visual perception is sensi-

tive to luminance contrast rather than absolute luminance
value. As indicate by Weber’s law, if the luminance of a
test stimulus is just noticeable from the surrounding lu-
minance, then the ratio of just noticeable luminance dif-
ference to stimulus difference, known as Weber fraction,
is constant.

• Spatial Masking: The second factor reflects the fact that
the reduction in the visibility of the stimuli is caused
by the increase in the spatial nonuniformity of the back-
ground luminance. This fact is known as spatial masking.
Chou’s perceptual model estimates, from pixels in the

spatial domain, the JND value associated with each pixel

1One of the major merits of this model is its independence of the wavelet
kernels unlike the model proposed in [3]. Therefore, the proposed water-
marking system will be valid for any kind of transform kernels.

2Only achromatic images in the spatial domain are considered. Hence,
the JND/MND profile must be decomposed to fit a subband decomposition
structure.



in the image. Strictly speaking, the visibility threshold of
JND is a very complex process and depends on the afore-
mentioned factors. However, in [1] the inter-relevance of the
two factors is simplified and the JND value is defined as the
dominant effect of the two factors. The perceptual model for
estimating the ”full-band JND” profile is described by the
following expressions [1]:

JND f b(x,y) = max
{

f1(bg(x,y),mg(x,y)),
f2(bg(x,y))

} (1)

f1 (bg(x,y),mg(x,y)) = mg(x,y)a (bg(x,y))+ b (bg(x,y)) (2)

f2 (bg(x,y)) =





T0 ·
(

1−
(

bg(x,y)
127

)1/2
)

+3

for bg(x,y)≤ 127
g · (bg(x,y)−127)+3

for bg(x,y) > 127

(3)

a (bg(x,y)) = bg(x,y) ·0.0001+0.115 (4)

b (bg(x,y)) = l −bg(x,y) ·0.001 (5)

where bg(x,y) and mg(x,y) are the average background
luminance and the maximum weighted average luminance
differences around the pixel at (x,y), respectively. The spa-
tial masking effect is taken into account by the function
f1(x,y), the linear behavior of which is obtained from psy-
chovisual tests [1]. The visibility threshold due to back-
ground luminance is given by the function f2(x,y) in which
the relationship between noise sensitivity and the back-
ground luminance is verified by a subjective test [1]. The pa-
rameters a (x,y) and b (x,y) are background-dependent func-
tions derived through psychovisual experiments. T0 and g
denote, respectively, the visibility threshold when the back-
ground grey level is 0, and the slope of the linear function
relating the background luminance to visibility threshold at
higher background luminance (level higher than 127). Pa-
rameter l affects the average amplitude of visibility thresh-
old due to spatial masking effect. During the conducted ex-
periments in [1], T0, g , and l are found to be 17, 3

128 , and 1
2 ,

respectively.

2.2 Deriving MND Profile

To accommodate different embedding strengths, the MND
profile of different distortion levels are required. In this case,
the MND profile is obtained by simply multiplying every el-
ement of the JND profile, defined in (1), by a constant scale
factor d as a distortion index. Thus, the MND profile with a
distortion index, d, can be expressed as [1]:

MNDd, f b (x,y) = JND f b (x,y) ·d (6)

where the value of d ranges from 1.0 to 4.0. The
mg(x,y) across the pixel at (x,y) is determined by
calculating the weight average of luminance changes

around the pixel in four directions. Four operators
Gk(i, j) for i, j = 1,2, . . . ,5, are employed to perform
the calculations, where the weighting coefficient de-
creases as the distance away from the central pixel in-
creases. The weight operators, Gk are given by [1]: rCl

G1=




0 0 0 0 0

1 3 8 3 1

0 0 0 0 0

−1 −3 −8 −3 −1

0 0 0 0 0




G2=


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0 0 1 0 0

0 8 3 0 0

1 3 8 −3 −1

0 0 −3 −8 0

0 0 −1 0 0




G3==




0 0 1 0 0

0 0 3 8 0

−1 −3 0 3 1

0 −8 −3 0 0
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
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G4==


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0 1 0 −1 0

0 3 0 −3 0

0 8 0 −8 0

0 3 0 −3 0

0 1 0 −1 0




Using the weights defined in (2.2), the maximum
weighted average of luminance differences, mg(x,y), is given
by the following expression:

mg(x,y) = max
k=1,2,3,4

{|gradk(x,y)|} (7)

where

|gradk(x,y)| = 1
16

5
å

i=1

5
å
j=1

p(x−3+ i,y−3+ j)

· Gk(i, j)
(8)

where p(x,y) denotes the pixel at position (x,y). The
average background luminance , bg(x,y), is calculated by a
weighted operator, B(i, j), i, j = 1,2, . . . ,5.

bg(x,y) =
1

32

5

å
i=1

5

å
j=1

p(x−3+ i,y−3+ j) ·B(i, j) (9)

where the weight factor, B(i, j) is given by:

B(i, j) =




1 1 1 1 1
1 2 2 2 1
1 2 0 2 1
1 2 2 2 1
1 1 1 1 1


 (10)

2.3 Decomposition of the JND/MND Profile

Since Chou’s perceptual model is not aimed at watermark
embedding, the JND/MND profile must be modified to ac-
commodate the decomposition structure obtained using bal-
anced multiwavelet transforms. For an N ×N image, the
JND/MND profile, as originally proposed by [1], has the lin-
ear subband structure shown in Fig. 1.

As suggested by the HVS models and human perception
sensitivity, the high frequency subbands have higher weights.
However, the linear decomposition structure, shown in Fig.
1, does not lend itself to such a property. Therefore, we need
to find a suitable decomposition according to the frequency
content of the BMW subbands. Such a solution is presented
in Fig. 2. Using the BMW decomposition and the modi-
fied JND profile, Figs. 3-4 show the resulting JND/MND
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Figure 2: JND profile structure for BMW subbands using
five decomposition levels.

profiles of Lena and Barbara images, respectively. These fig-
ures clearly show the ability of the proposed JND/MND pro-
file to adaptively adjust itself to the image activity. There-
fore, edges and salient features are efficiently discriminated
as highlighted. This property is a key factor to satisfy the im-
perceptibility requirement often encountered in watermark-
ing applications [4].

Finally, the JND/MND profile should be decomposed to
fit the subband structure shown in Fig. 2. The subband profile
is given by:

JND2
q(x,y) =

[
3
å

i=0

3
å
j=0

JND2
f b(i+ x ·4, j + y ·4)

]
· w q

for q = 0,1, · · · ,15, and 0≤ x≤ N
4 , 0≤ y≤ N

4

where JNDq(x,y) denotes the magnitude of the JND at
position (x,y) of the qth subband (see Fig. 2). The factor
w q, representing the qth subband weight, is defined by the
following expression:

w q =

(
Sq ·

15

å
k=0

S−1
k

)−1

, for q = 0,1, · · · ,15, (11)

where Sk denotes the average sensitivity of the HVS to
spatial frequencies in the kth subband. The average sensitiv-
ity, Sk, is given by [1]:

Sk = 16
N·N

(e k+1)h−1

å
u=e k·h

(r k+1)w−1

å
v=r k·w

x (u,v)

for k = 0,1, · · · ,15,

(12)

Figure 3: Lena image (left) and its resulting JND/MND pro-
file (right).

Figure 4: Barbara image (left) and its resulting JND/MND
profile (right).

where

h =
N
4

, w =
N
4

, e k = b k
4
c, r k = k− e k ·4

and x (u,v) denotes the response curve of the modulation
transfer function (MTF) for 0≤ u≤N, 0≤ v≤N. Chou and
Li [1] propose the following generalized formula for fitting
the response curve of the MTF:

x (u,v) = a ·
[

b+
(

W (u,v)
W 0

)]
· exp

[
−

(
W (u,v)

W 0

)c]
(13)

where

W (u,v) =
[( 32v

N

)2 +
( 24u

N

)2
] 1

2

for 0≤ u≤ N−1, 0≤ v≤ N−1
(14)

is the spatial frequency in cycles per degree (cpd) and W 0
is a shaping parameter for the MTF curve [1]. It should be
noted that the JND profiles shown in Figs. 3-4 are derived
for the MTF curve modeled by a = 2.6, b = 0.0192, c = 1.1,
W 0 = 8.772, T0 = 17, g = 3

128 , and l = 1
2 , respectively. The

distortion index, d, is fixed to 3.0. The BMW JND profile
subbands, JNDq(x,y), are inverse-transformed to obtain the
spatial JND profiles shown in Figs. 3-4.

3. PERCEPTUAL IMAGE WATERMARKING USING
JND PROFILES OF BALANCED MULTIWAVELETS

Using the perceptual model proposed in Section 2, we will
implement a perceptual watermarking system where the fol-
lowing embedding rule used:

x j = s j (1+ a j pn jmk) , j = 1,2 . . . , c (15)

where,
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• s j represents the host transform coefficient selected from
a set to hide the watermark bit mk. Each watermark bit,
mk,1 ≤ k ≤ M, is embedded in a set containing c host
transform coefficients. mk±1.

• x j is the watermarked transform coefficient.
• a j is the JND profile weight calculated based on the per-

ceptual model described in Section 2. a j is variable
and changes across subbands and decomposition levels
as shown in Section 2.

• pn j is the pseudo-random coefficient used to modulate
the watermark bit mk.
First, we present results of the performance of the pro-

posed system where we assume no attacks against the em-
bedded watermarks. The embedded watermark messages
consist of 128, 256, 512, and 1024 bits, respectively. Fig.
5 shows the bit error rate (BER) of the JND-based percep-
tual watermarking system. In Fig. 6, we show results for the
performance of the decoder in the presence of AWGN noise.
The watermark messages consist of 256 bits. For the same
watermark length, Fig. 7 shows the BERs of the watermark
decoder in the presence of JPEG compression. The robust-
ness of the proposed system against JPEG compression is
clearly demonstrated in Fig. 7.

4. CONCLUSIONS

In this paper, we have proposed a novel perceptual model for
balanced multiwavelets based on JND profiles derived using
HVS models. To illustrate the performance of the perceptual
model, we integrated this model into a spread-spectrum im-
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Figure 7: Logarithmic BERs of BCH (15, 7) code in the pres-
ence of JPEG compression using watermark length of 256
bits.

age watermarking system to account for imperceptibility re-
quirements often encountered in watermarking applications.
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