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Abstract— We consider the problem of improving the per-
formance of multiwavelets-based image coders through texture
parametrization. Texture parametrization is designed to achieve
higher compression rates while maintaining excellent visual
image quality. Tradeoffs among these two conflicting goals,
maximizing compression rate and minimizing distortion due to
compression, are possible by taking into account the imperfec-
tions inherent to the human visual system (HVS). We present
a statistical view of the texture parametrization using balanced
multiwavelets and develop a hybrid image compression scheme.
The statistical scheme leads to a new multiresolution-based
texture parametrization relying on the accurate modeling of the
marginal distribution of balanced multiwavelet coefficients using
generalized Gaussian density (GGD). Furthermore, we show that
the proposed texture parametrization scheme is computationally-
efficient. The proposed hybrid codec can be seamlessly integrated
in any embedded image coder while requiring minimal header
data.

I. INTRODUCTION

A. Motivations

Recent advances in image coding research have led to the
emergence of the state-of-the-art image compression standard
JPEG 2000. However, storage and transmission of digital im-
ages are still demanding for higher compression rates than ever
due to stringent bandwidth requirements, and thus compressed
images are often impaired by various types of artifacts such as
blockiness, blur, ringing, etc. [1]. To improve the visual quality
of compressed images, however, there must be an effective and
simple method to make use of the imperfections inherent to
the human visual system (HVS). As a result, there has been a
growing interest in HVS-based image coding schemes. In this
context, visually-lossless compression ratio, among several
criteria, can be used to evaluate the performance of any image
compression scheme. This ratio represents a quality criteria
that significantly depends on the image being compressed,
the compression scheme and the final viewing conditions.
Compressing images at higher rates may introduce visual im-
pairments in the compressed image. Because artifacts affecting
image texture are immediately perceived by human observers
and lossless encoding of texture affects the coding bitrate
efficiency, it becomes clear that the textured regions should
be encoded separately using specially adapted techniques [2].
Hence, instead of losslessly-encoding textured regions at the
pixel level, which is usually computationally-expensive, one
may use texture-based models to characterize the textured
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regions and then it would suffice to inform the image decoder
about the model parameters only 1. Then, the decoder uses the
transmitted model parameters to generate a texture visually
similar to the original one. Thus, the incorporation of the
texture characterization stage would drastically reduce the
coding complexity and costs.

II. EXISTING APPROACHES

In this work we consider the problem of texture parametriza-
tion using a statistical approach. Our point is that, given
only a low-level representation, statistical modeling provides a
powerful tool to compensate for the image impairments due to
compression by deceiving the HVS system. Considering tex-
ture modeling and image compression simultaneously enables
us to design a hybrid image coder.

1) Stochastic Texture Modeling: Texture modeling involves
analysis and synthesis steps. In the former step, texture is
represented by a set of limited features. Using this set of
features, the synthesis stage generates a texture that looks
similar to the original one. Texture can be classified into two
major classes, namely, 1) structural/deterministic texture and
2) stochastic texture [3]. While, the former can be described
by a set of texture primitives and placement rules, stochastic
processes can be used to model the latter [4]. The proposed
work in this paper deals exclusively with stochastic texture.
The orientation and frequency of texture are important clues to
their discrimination [1]. Tuceryan and Jain [5] identify five ma-
jor categories of features for texture identification; statistical,
geometrical, structural, model-based, and signal processing
features. A common denominator in most stochastic texture
modeling schemes is that the textured image is submitted to a
linear transform, filter, of filter bank followed by some energy
measure [6]. These schemes operate directly on the gray-level
information. Some schemes, such as those based on Fourier-,
Wavelet- or Gabor-transforms, first apply a filter to the input
image, and then work on the filtered versions of the image [6].
Textured regions in filtered images can be easily modeled as
first-order processes because the filtering operation limits the
information-content in each filtered image.

2) Texture-Based Image Coding: In hybrid image coding
schemes, the encoder first identifies textured regions, which
are then analyzed, to produce the model parameters or features.
These latter are then transmitted to the decoder that produces a
synthetic texture based on these features through the synthesis
stage. Mallat and Froment [7] propose an image coder where
edges are extracted and coded using dyadic wavelet transform
and textured regions are coded separately by employing a
subband-based wavelet transform. Neves and Mendonça [8]
develop an improved version of the work in [7]. In [8], the

1Usually, the representation of the model parameters requires few bits only.
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edge selection is based on the contour length and only a
reference edge map is kept assuming that the edge locations
would not move across scales. It is worth noting that no
statistical or structural/deterministic model has been used
to characterize the textured regions in the coding schemes
presented in [7], [8]. Ryan et al. [9] propose an hybrid
image coding scheme where the input image is segmented
into textured and non-textured regions. The filtering-based
proposed scheme operates in the wavelet domain. Textured
regions are modeled by an auto-regressive (AR) model. A
standard wavelet image coder is used to encode the non-
textured regions. The proposed scheme encodes the texture
segmentation map. The texture segmentation stages contributes
to the increase of the overall coder complexity. The improved
visual quality achieved justifies the increased complexity. The
hybrid image coder proposed by Debure and Kubota [10] first
estimates a residual image for a specific compression bitrate.
Then, textured regions in the residual image are modeled in the
spatial domain. Each pixel in the residual image is classified
into one of N (typically 4) different texture classes. An AR
model describes the texture in each of the N classes. Then,
the encoder encodes the AR parameters and the map of N
texture classes that are transmitted to the decoder.

III. OVERVIEW OF THE PROPOSED SCHEME

A. Motivations

Most efficient wavelet-based image codecs perform coding
of wavelet coefficients via bit-plane coding. In this class
of coding, the most significant bits of the largest wavelet
coefficients are first encoded. Then, progressively the large
coefficients are refined and smaller coefficients are encoded as
significant through two different passes, namely significance
and refinement passes [11]. Embedded zero-tree (EZW) coding
of wavelet coefficients was introduced by Shapiro [12]. EZW
coding achieves its embedding via binary bit-plane coding of
deadzone scalar quantizer indices [11]. Building on the success
of EZW coding, SPIHT algorithm has several features of its
predecessor [11]. In lossy compression using bit-plane coding,
the largest wavelet coefficients are decoded and fully restored.
However, coefficients with small magnitude will be zero-
length encoded. Usually, textured regions are represented by
such type of small-magnitude coefficients. Therefore, textured
regions are affected by visual artifacts after decoding such
as blurring. In the proposed coding scheme, small-magnitude
wavelet coefficients will be considered as stochastic texture
and therefore will be modeled using the parametric model
discussed below.

B. Proposed Hybrid Image Codec

In the proposed texture-based image coder, the luminance
channel of the input image is first decomposed using balanced
multiwavelet decomposition. For statistically consistent model
parameters, texture modeling is only applied to the first
two levels of decomposition. Since texture segmentation is
computationally-expensive, we propose a simple method to
characterize textured regions in each subband using block-
by-block processing. In this case, we group the subband

coefficients into several blocks of specific size, say n × n.
Then, model parameters are generated for each block. In this
way, the computational load is kept at minimal cost and less
overhead data will be transmitted to the decoder. Within each
subband block, wavelet coefficients with reduced bit-plane
representation will be considered as stochastic texture and
fitted to the parametric texture model. At the decoder side,
synthetic texture, generated using the model parameters, will
be inserted at locations where subband coefficients are zero-
encoded, i.e., no information is available about the original
coefficient magnitude.

1) Texture Modeling: In this work, subband coefficients,
represented by the last three bit-planes only, are considered
as stochastic texture. Therefore, coefficients below a specific
threshold will be treated as texture. (1) defines stochastic
texture:

|w(m,n)| < Ts (1)

where w(m,n) represent the subband coefficient at spatial
location m,n and Ts represents the threshold below which
subband coefficients may be considered as stochastic texture.
It is worth noting that (1) considers only subbands at de-
composition levels 1 and 2 only. The marginal densities of
subband coefficients are good candidate to model stochastic
texture. This choice is justified by the findings of recent
psychological research on human texture perception where it is
suggested that two homogeneous textures are often difficult to
discriminate if they produce similar marginal distributions of
responses from a bank of filters [13]. Because texture modeling
basically characterizes the local histogram of the subband
coefficient magnitudes, the size of the local blocks is a major
factor that affects the overall performance of the proposed
modeling approach. In this work, three different sizes were
tested, full-subband, 16× 16 and 32× 32 blocks, respectively.
Do and Vetterli [13] suggest that experiments show that a
good probability density function (PDF) approximation for
the marginal density of subband coefficients at a particular
decomposition level and orientation produced by various type
of wavelet transforms may be achieved by adaptively varying
two parameters of the GGD model, which is defined as [13]:

p(x; α, β) =
β

2αΓ
(

1
β

)e
−
( |x|

α

)β

(2)

where Γ(·) is the Gamma function, i.e., Γ(z) =∫ ∞
0

e−ttz−1dt, z > 0. In (2), α is the standard deviation
and β is the exponent that controls the shape of the GGD
distribution. The GGD model contains the Gaussian and
Laplacian PDFs as special cases, using β = 2 and β = 1,
respectively. In this paper, we use a maximum likelihood (ML)
estimator to estimate the model parameters. The ML solution
of the parameter α is given by the following relations [13]:

α̂ =

(
β

L

L∑
i=1

|wi|β
) 1

β

(3)
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where L is the number of subband coefficients in the
subband block under analysis. The shape parameter β is the
solution of the following transcendental equation [13]:

1 +
Ψ(1/β̂)

β̂
−

∑ |wi|β̂ log |wi|∑ |wi|β̂
+

log
(

β̂
L

∑ |wi|β̂
)

β̂
= 0 (4)

where Ψ(·) is the digamma function, i.e., Ψ(z) = Γ
′
(z)

Γ(z) . (4)
can be solved numerically. Do and Vetterli [13] propose an
effective determination of the parameter β̂ using the Newton-
Raphson iterative procedure.

2) Multiwavelts and Balanced Multiwavelets: Orthogonal-
ity is a desirable property for software/hardware implementa-
tion and symmetry provides comfort to image perception [1].
In the context of image processing applications, the following
three properties are important: 1) orthogonality to ensure the
decorrelation of subband coefficients, 2) symmetry (i.e., linear
phase) to process finite length signals without redundancy
and artifacts, and 3) finite-length filters for computational
efficiency. However, most real scalar wavelet transforms fail to
possess these properties simultaneously. To circumvent these
limitations, multiwavelets have been proposed where orthog-
onality and symmetry are allowed to co-exist by relaxing the
time-invariance constraint [14].
Multiwavelets: Multiwavelets may be considered as gener-
alization of scalar wavelets. However, some important dif-
ferences exist between these two types of multiresolution
transforms. In particular, whereas wavelets have a single
scaling φ(t) and wavelet function ψ(t), multiwavelets may
have two or more scaling and wavelet functions. In general,
r scaling functions can be written using the vector notation
Φ(t) = [φ1(t)φ2(t) · · ·φr(t)]

T , where Φ(t) is called the
multiscaling function. In the same way, we can define the
multiwavelet function using r wavelet functions as Ψ(t) =
[ψ1(t)ψ2(t) · · ·ψr(t)]

T . The scalar case is represented by
r = 1. Most of developed multiwavelet transforms use two
scaling and wavelet functions, while r can take theoretically
any value. Similar to scalar wavelets and for the case where
r = 2, the multiscaling function satisfies the following two-
scale equation:

Φ(t) =
√

2
∞∑

k=−∞
HkΦ(2t − k), (5)

Ψ(t) =
√

2
∞∑

k=−∞
GkΦ(2t − k), (6)

However, it should be noted that {Hk} and {Gk} are 2 × 2
matrix filters defined as:

Hk =
[

h0(2k) h0(2k + 1)
h1(2k) h1(2k + 1)

]
, (7)

Gk =
[

g0(2k) g0(2k + 1)
g1(2k) g1(2k + 1)

]
(8)

where {hk(n)} and {gk(n)} are the scaling and wavelet
filter sequences such that

∑
n h2

k(n) = 1 and
∑

n g2
k(n) = 1

for k = 1, 2. The matrix elements in the filters, given by
(7) and (8), provide more degrees of freedom than scalar
wavelets. However, the multi-channel nature of multiwavelets
yields a subband structure that is different from that using
scalar wavelets.
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Fig. 1. Multiwavelet filter bank using one iteration.

Fig. 1 clearly shows that multiwavelets are defined for
vector-valued signals (1D and 2D). Such vectorizing does
not only introduce a fundamental asymmetry but it yields
an approximation subband that does not represent a coarse
approximation of the input image. The structure of the latter is
different from that obtained using scalar wavelets. In the case
of multiwavelets, the four sub-blocks of the approximation
subband have very dissimilar spectral characteristics [14].
Balanced Multiwavelets: Lebrun and Vetterli [14] indicate
that the balancing order of the multiwavelet is indicative of its
energy compaction efficiency. However, a high balancing order
alone does not ensure good image compression performance.
For a scalar wavelet, the number of vanishing moments of
its wavelet function

∫
tmψ(t)dt = 0 determines its vanishing

order. For a scalar wavelet with vanishing order K, the high-
pass branch cancels a monomial of order less than K and the
lowpass branch preserves it. For a multiwavelet transform, we
have the similar notion of approximation order; a multiwavelet
is said to have an approximation order of K if the vanishing
moments of its wavelets,

∫
tmψi(t)dt = 0 for 0 ≤ i ≤ r − 1

and 0 ≤ m ≤ K−1. An approximation order of K implies that
the highpass branch cancels monomials of order less than K.
But, in general, for multiwavelets, the preservation property
does not automatically follow from the vanishing moments
property. If the multifilter bank preserves the monomials at the
lowpass branch output, the multiwavelet is said to be balanced
[14]. The balancing order is p if the lowpass and highpass
branches in the filter bank preserve and cancel, respectively
all monomials of order less than p (p ≤ K). Multiwavelets
that do not satisfy the preservation/cancellation property are
said to be unbalanced. For unbalanced multiwavelets, the input
needs suitable prefiltering to compensate for the absence of
the preservation/cancellation property, balancing obviates the
need for input prefiltering; thus, they are computationally more
efficient than the unbalanced multiwavelets. A time-varying
representation of balanced multiwavelets is shown in Fig. 2.

The time-varying filter bank of Fig. 2 is defined by the
following relations:

[
H0(z)
H1(z)

]
= H(z2)

[
1

z−1

]
(9)
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Fig. 2. Time-varying multiwavelet filter bank. Analysis stage (left). Synthesis
stage (right).

[
G0(z)
G1(z)

]
= G(z2)

[
1

z−1

]
(10)

where H0(z) and H1(z) are the Z-transforms of the two
lowpass branch filters h0 and h1. Similarly, G0(z) and G1(z)
are the Z-transforms of the two highpass branch filters g0

and g1. In the time-varying filter bank implementation, the
coefficients of the two lowpass (highpass) filters are simply
interleaved at the output (see Fig. 2). Therefore, a separable
2D transform can now be defined in the usual way as the
tensor product of two 1D transforms [14]. It is worth noting
that unlike their unbalanced counterparts, the sub-blocks of the
approximation subband of balanced multiwavelets have similar
spectral characteristics as shown in Fig. 3 for the case of Lena
image.

Fig. 3. Balanced multiwavelet approximation subband of Lena image (left).
Spectral densities of subband blocks L0L0, L0L1, L1L0 and L1L1 (right).

IV. SIMULATION RESULTS

Image compression experiments using balanced multi-
wavelets were conducted both with and without texture mod-
eling. Several balanced multiwavelets with diverse character-
istics are described in the literature [14]. In this paper, we
adopt the SPIHT zerotree quantizer [11]. In this work, many
high resolution images were used to test the performance of
the proposed hybrid image codec. Each of these images is
compressed at 0.1 and 0.2 bit per pixel (bpp) with the plain
SPIHT algorithm and the hybrid SPIHT-based scheme using 5
decomposition levels using BAT-1 balanced multiwavelet [14].
We report results for Woman-43 image only. On the other
hand, results using the proposed hybrid codec, as shown for
the same image in Fig. 5, clearly demonstrate the improvement
achieved in the visual quality of the compressed images.
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Fig. 4. Compressed Woman-43 image at 0.2 bpp using the plain modified
SPIHT coder.

Fig. 5. Compressed Woman-43 image at 0.2 bpp using the hybrid modified
SPIHT coder.
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