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Abstract— In this paper, we describe a two-step variance-
adaptive method for image denoising based on a statistical
model of the coefficients of balanced multiwavelet transform.
The model is derived in a statistical framework from a recent
successful scheme developed in the seemingly unrelated front of
lossy image compression. Clusters of multiwavelet coefficients are
modeled as zero-mean Gaussian random variables with high local
correlation. In the adopted framework, we use marginal prior
distribution on the variances of the multiwavelet coefficients.
Then, estimates of the local variances are used to restore the
noisy multiwavelet coefficients based on a minimum mean square
error estimation (MMSE) procedure. Experimental results, using
images contaminated with additive white Gaussian noise, show
that the proposed method outperforms most of the denoising
schemes reported in the literature. In this paper, the performance
comparison is restricted to non-redundant multiresolution rep-
resentations.

I. INTRODUCTION

During acquisition or transmission, an image gets often
contaminated by noise. Therefore, it is desirable to derive an
estimate of the original image through denoising using some
estimation procedure. Recently, there has been an emergence
of denoising schemes based on statistical modeling of image
statistics. However, an accurate implicit or explicit modeling
of the statistics of natural images is a critical component
of many image processing tasks and in the same time a
challenging task, partly because of the high dimensionality
of the signal [1]. To circumvent the dimensionality prob-
lem, most of the available statistical models rely on two
basic assumptions: 1) spatial homogeneity where it is as-
sumed that the distribution of values in a neighborhood is
the same for all such neighborhoods, regardless of absolute
spatial position [1]; 2) local adaptivity where the probabil-
ity structure can be defined locally. These two assumptions
lead to a Markov random field model that can be further
simplified by assuming Gaussian distributions [1]. Over the
past decade, it has become a standard to boost the power
of statistical image models by transforming the signal from
the pixel domain to a multiresolution representation. This
class of image processing algorithms, loosely referred to as
wavelet-based algorithms, are characterized by a decoupling
property where the high-order statistical features of natural
images are efficiently decoupled [1], [2]. In recent years,
more sophisticated models for homogeneous local probability
have been developed for images in multiscale representations.
These models investigate the existence of significant spatial
dependencies in the transform coefficients, and try to describe
these dependencies using suitable long-tailed distributions
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[1]. A simple parametric model, augmented with a set of
”hidden” random variables that govern the model parameters
such as local variance, models effectively these higher order
dependencies. For instance, a hidden Markov model based
on wavelet trees was successfully applied to signal [3] and
image [4] denoising. Similar models have become widely used
in speech processing [1]. On a unrelated front, interesting
links between image compression and image denoising have
been established. For instance, Natarajan [5] proposes the
use of lossy compression for image denoising. The basic
intuition behind the use of lossy compression for denoising
is that a ”signal typically has a correlated structure but white
noise does not have structural redundancies” [2]. The same
intuition is also apparent in mathematically sound approaches
such as minimum description length (MDL) and complexity
regularized denoising [2]. Chang et al. [6] propose an adaptive
model for image denoising via wavelet thresholding using
context modeling of the global coefficients histogram. In
this paper, we propose an approach to model neighboring
coefficients of balanced multiwavelet transform. The model
is inspired by the estimation-quantization (EQ) model that
has been successfully applied in image coding [7]. Borrowing
ideas from lossy image compression technology, denoising
schemes based on the latter have been proposed [6]. These
schemes exploit the intimate link that exists between lossy
compression and denoising. Intuitively, images have structural
correlations that an efficient image coder can exploit to reduce
the existing statistical redundancy. However, white noise does
not have any structural redundancy. Therefore, in the case of
denoising, lossy compression allows for discriminating noisy
regions from clear ones [6]. In this paper, we develop a local
denoising solution where the image multiwavelet coefficients
are modeled as zero-mean Gaussian random variables with
high local correlation. The novelty of the proposed scheme lies
in the use of balanced multiwavelet representations for image
denoising. Unlike scalar wavelets 1, this class of representation
allows for simultaneous orthogonality and filter symmetry.

II. STATISTICAL IMAGE MODELS FOR DENOISING

Models of image statistics have been developed in early
works of television engineering [1]. In these models, the the
image statistics are assumed to be strict-sense stationary (i.e.,
spatially homogeneous). Also, the statistics are supposed to be
invariant to changes in spatial scale. These assumptions lead
to the widely used model: images can be characterized by a
Gaussian random field with variance inversely proportional to
the frequency. Therefore, under the Gaussianity assumption,
the optimal estimator is linear. On the other hand, it became
clear, using casual observation, that images can be highly

1We refer to classical wavelets as scalar wavelets.
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inhomogeneous due to the mixture of features such as edges
and smooth regions. It is noted that large-amplitude transform
coefficients are sparsely distributed throughout the image
subbands.

A. Two-Step Variance-Adaptive Models

Most of image denoising techniques are based on Lee’s two-
step procedure [8]. In Lee’s procedure, the local variance is
first estimated from a neighborhood of pixels, then a linear
least squares solution is derived using the estimated variance.
This procedure can be cast into the class of empirical Bayes
estimators [1] where the parameters of a local model are first
estimated from the observed data, then a signal estimate is sub-
sequently obtained using the estimated local parameter. Most
of the variance-adaptive models published in the literature
estimate the local variance from a set of neighboring subband
coefficients, and then incorporate the estimated variance to
denoise the observed image. On the other hand, GSM-based
models yield excellent denoising results w.r.t to visual quality
and in terms of mean squared error. It is worth noting that
the class of two-step empirical Bayes approach is suboptimal
[1], regardless of the optimality of the local variance estimator,
because the estimation error associated with the first step is not
incorporated in the second step. Li and Orchard [9] use a max-
imum a posteriori (MAP) estimator. Using a MAP estimator,
but unlike [9], Mihçak et al. [2] define an exponential marginal
prior, whereas Portilla et al. use a lognormal prior [10]. In
[11], the set of multiplier variables has a global description
modeled by a tree-structured Markov model. In this paper, we
propose the use of balanced multiwavelet transforms with a
least squares optimal single-step Bayesian estimator. Balanced
multiwavelets, a class of multiresolution analysis representa-
tions based on multiple scaling and wavelet functions, achieve
simultaneous symmetry and orthogonality. Specifically, these
transforms can be characterized by time-varying filter banks
[12]. However, it is well known that denoising schemes based
on overcomplete representations perform better. In this case,
a commonly followed solution to this problem is to eliminate
the decimation operation [1].

1) Generalized Gaussian Model: In this work, we model
image multiwavelet coefficients as a realization of a doubly
stochastic process. In this case, the multiwavelet coefficients
are assumed to be conditionally independent zero-mean Gaus-
sian random variables, given their variances. These variances
are modeled as identically distributed and highly correlated
random variables. The multiwavelet coefficients are assumed
to be ”locally” independent and identically-distributed (i.i.d)
variables. The two-step variance-adaptive denoising frame-
work, considered in this paper, is defined by:

y = x + n (1)

where x and y represent the original and contaminated
image pixels, respectively. The additive noise, n, is addi-
tive white Gaussian (AWGN) with known variance σ2

n. The
multiwavelet equivalent of (1) yields quantities with similar
statistical properties due to the orthonormality of the balanced

multiwavelet transforms [12]. The multiwavelet coefficients of
the contaminated image are given by Y (k) = X(k) + w(k),
where w(k) is AWGN as explained before. The MMSE
estimator for X(k) is given by [2]:

X̂(k) =
σ2

X(k)
σ2

X(k) + σ2
n(k)

Y (k) (2)

where σ2
X(k) represents the variance of the clean image

coefficient. Because σ2
X(k) is not available, we approximate it

using local maximum a posteriori (MAP) estimation procedure
for each multiwavelet coefficient. The MAP procedure is
performed using a local neighborhood and a prior model
for σ2

X(k). Using the variance estimate, σ̂2
X(k), the MMSE

estimate is:

X̂(k) =
σ̂2

X(k)
σ̂2

X(k) + σ2
n(k)

Y (k) (3)

2) Maximum Likelihood Estimation of σ̂2
X(k): Using a

square neighborhood of each multiwavelet coefficient, an
estimate of σ̂2

X(k) is derived assuming that the correlation
between variances of neighboring coefficients is high. There-
fore, the approximate Maximum Likelihood (ML) estimator is
given by [2]:

σ̂2
X(k) = arg max

σ2
X
≥0

∏
j∈Ω(k)

P
(
Y (j)|σ2

X

)

= max

(
0, 1

M

∑
j∈Ω(k)

Y 2(j)− σ2
n

)
(4)

where Ω(k) is a square window centered at the multiwavelet
coefficient Y (k), P

(·|σ2
X

)
is the Gaussian distribution with

zero-mean and variance σ2
X + σ2

w, and M is the number of
coefficients in the square window Ω(k). Using a prior marginal
distribution prior fσ

(
σ2

X

)
for each σ2

X(k), the approximate
maximum a posteriori (MAP) estimator of σ2

X(k) is given by
[2]:

σ̂2
X(k) = arg max

σ2
X
≥0


 ∏

j∈Ω(k)

P (Y (j)|σ2
X)


 fσ(σ2

X) (5)

Using the exponential prior, fσ

(
σ2

X

)
= λe−λσ2

X , the MAP
estimate of (5) becomes [2]:

σ̂2
X(k) = max


0,

M

4λ


−1 +

√√√√1 +
8λ

M2

∑

j∈Ω(k)

Y 2(j)


− σ2

n


 (6)

III. MULTIWAVELETS AND BALANCED MULTIWAVELETS

Orthogonality is a desirable property for software/hardware
implementation and symmetry provides comfort to image per-
ception [12]. In the context of image processing applications,
the following three properties are important: 1) orthogonal-
ity to ensure the decorrelation of subband coefficients, 2)
symmetry (i.e., linear phase) to process finite length signals



without redundancy and artifacts, and 3) finite-length filters for
computational efficiency. However, most real scalar wavelet
transforms fail to possess these properties simultaneously.
To circumvent these limitations, multiwavelets have been
proposed where orthogonality and symmetry are allowed to
co-exist by relaxing the time-invariance constraint [12].

A. Multiwavelets

Multiwavelets may be considered as generalization of scalar
wavelets. However, some important differences exist between
these two types of multiresolution transforms. In particular,
whereas wavelets have a single scaling φ(t) and wavelet func-
tion ψ(t), multiwavelets may have two or more scaling and
wavelet functions. In general, r scaling functions can be writ-
ten using the vector notation Φ(t) = [φ1(t)φ2(t) · · ·φr(t)]

T ,
where Φ(t) is called the multiscaling function. In the same
way, we can define the multiwavelet function using r wavelet
functions as Ψ(t) = [ψ1(t)ψ2(t) · · ·ψr(t)]

T . The scalar case
is represented by r = 1. Most of developed multiwavelet
transforms use two scaling and wavelet functions, while r can
take theoretically any value. Similar to scalar wavelets and for
the case where r = 2, the multiscaling function satisfies the
following two-scale equation:

Φ(t) =
√

2
∞∑

k=−∞
HkΦ(2t− k), (7)

Ψ(t) =
√

2
∞∑

k=−∞
GkΦ(2t− k), (8)

However, it should be noted that {Hk} and {Gk} are 2 × 2
matrix filters defined as:

Hk =
[

h0(2k) h0(2k + 1)
h1(2k) h1(2k + 1)

]
, (9)

Gk =
[

g0(2k) g0(2k + 1)
g1(2k) g1(2k + 1)

]
(10)

where {hk(n)} and {gk(n)} are the scaling and wavelet
filter sequences such that

∑
n h2

k(n) = 1 and
∑

n g2
k(n) = 1

for k = 1, 2. The matrix elements in the filters, given by
(9) and (10), provide more degrees of freedom than scalar
wavelets. However, the multi-channel nature of multiwavelets
yields a subband structure that is different from that using
scalar wavelets.
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Fig. 1. Multiwavelet filter bank using one iteration.

Fig. 1 clearly shows that multiwavelets are defined for
vector-valued signals (1D and 2D). Such vectorizing does

not only introduce a fundamental asymmetry but it yields
an approximation subband that does not represent a coarse
approximation of the input image. The structure of the latter is
different from that obtained using scalar wavelets. In the case
of multiwavelets, the four sub-blocks of the approximation
subband have very dissimilar spectral characteristics [12].

B. Balanced Multiwavelets

Lebrun and Vetterli [12] indicate that the balancing order
of the multiwavelet is indicative of its energy compaction
efficiency. However, a high balancing order alone does not
ensure good image compression performance. For a scalar
wavelet, the number of vanishing moments of its wavelet
function

∫
tmψ(t)dt = 0 determines its vanishing order. For

a scalar wavelet with vanishing order K, the highpass branch
cancels a monomial of order less than K and the lowpass
branch preserves it. For a multiwavelet transform, we have
the similar notion of approximation order; a multiwavelet is
said to have an approximation order of K if the vanishing
moments of its wavelets,

∫
tmψi(t)dt = 0 for 0 ≤ i ≤ r − 1

and 0 ≤ m ≤ K−1. An approximation order of K implies that
the highpass branch cancels monomials of order less than K.
But, in general, for multiwavelets, the preservation property
does not automatically follow from the vanishing moments
property. If the multifilter bank preserves the monomials at the
lowpass branch output, the multiwavelet is said to be balanced
[12]. The balancing order is p if the lowpass and highpass
branches in the filter bank preserve and cancel, respectively
all monomials of order less than p (p ≤ K). Multiwavelets
that do not satisfy the preservation/cancellation property are
said to be unbalanced. For unbalanced multiwavelets, the input
needs suitable prefiltering to compensate for the absence of
the preservation/cancellation property, balancing obviates the
need for input prefiltering; thus, they are computationally more
efficient than the unbalanced multiwavelets. A time-varying
representation of balanced multiwavelets is shown in Fig. 2.

Fig. 2. Time-varying multiwavelet filter bank. Analysis stage (left). Synthesis
stage (right).

The time-varying filter bank of Fig. 2 is defined by the
following relations:

[
H0(z)
H1(z)

]
= H(z2)

[
1

z−1

]
(11)

[
G0(z)
G1(z)

]
= G(z2)

[
1

z−1

]
(12)

where H0(z) and H1(z) are the Z-transforms of the two
lowpass branch filters h0 and h1. Similarly, G0(z) and G1(z)



are the Z-transforms of the two highpass branch filters g0

and g1. In the time-varying filter bank implementation, the
coefficients of the two lowpass (highpass) filters are simply
interleaved at the output (see Fig. 2). Therefore, a separable
2D transform can now be defined in the usual way as the
tensor product of two 1D transforms [12].

IV. IMAGE DENOISING RESULTS

The denoising framework, considered in this paper, is
defined by (1). The denoising procedure is summarized as
follows: 1) apply 5-level balanced multiwavelet decomposition
of the noisy image; 2) process all image subbands except the
approximation subband; and 3) apply the inverse balanced
multiwavelet to obtain an estimate of the denoised image.
We assume that the noise n is an additive white Gaussian
process of known variance. The estimation procedure is given
by (2)-(4). We tested our algorithm on a number of images
contaminated with synthetic Gaussian white noise at four
different variances (10, 15, 20, and 25). Each noisy image
is decomposed into five levels using BAT-1 family of bal-
anced multiwavelets [12]. Different estimates of σ2

X(k) were
obtained using centered square-shape windows of sizes 3× 3,
5×5 and 7×7. Similar to [2], we set the parameter λ in (6) to
the inverse of the standard deviation of the multiwavelet coef-
ficients that are initially denoised using (4). In this paper, we
compare our method to three different denoising schemes. The
first one is the hard-thresholding of subband coefficients using
a constant threshold for all subbands. The second method is
MATLAB’s denoising algorithm wiener2 that implements a
local variance-adaptive scheme in the pixel domain. While
the last scheme is based on the two-step variance-adaptive
model proposed by Mihçak et al. [2]. The peak signal-to-
noise ratio (PSNR) results are shown in Table I. In this table,
the proposed method, based on (6), is denoted 2VAR-BMWP-
MAP. We report only results for Lena and Barbara images.
The results clearly indicate that the proposed 2VAR-BMWP-
MAP scheme outperforms one of the best available published
two-step denoising models [2]. Fig. 3(a) shows the original
Barbara image. The same image, contaminated with white
Gaussian noise of standard deviation σn = 20 is shown in
Fig. 3(b). The denoised image using the 2VAR-BMWP-MAP
denoising procedure is shown in Fig. 3(c). The results, shown
in Table I and Fig. 3, apply a centered square-shape window
of size 5 × 5 for the variance estimation. Finally, it should
be noted that the proposed scheme has not been compared
to the redundant multiresolution technique proposed in [1].
Such a comparison would require a formulation of balanced
multiwavelet transform different from that used in this work.
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