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Abstract— The emergence of digital multimedia and the prolif-
eration of its use have raised major concerns about the protection
of intellectual property. In response to these concerns, digital
watermarks have emerged as a possible solution for protecting
the intellectual property of digital content. In this paper, we
derive estimates of data-hiding capacity of balanced multiwavelet
transforms. This class of transforms, relatively new, has useful
properties for image processing applications as shown in this
paper. Furthermore, we will investigate the relevance of two
closely related statistical models, developed for scalar wavelets,
for modeling the statistics of balanced multiwavelet transform
coefficients. Finally, we will present performance results of a
spread spectrum watermarking system that is based on this new
transform.

I. INTRODUCTION

With the rapid growth and widespread use of network
distributions of digital media content, there is an urgent need
for protecting the copyright of digital content against piracy
and malicious manipulation. Recently, watermarking systems
have been proposed as a possible and efficient answer to these
concerns. Digital watermarking refers to embedding an auxil-
iary signal (called watermark) within a host signal such as text,
audio, image, or video. Tampering includes operations such as
lowpass/highpass/nonlinear filtering, compression, addition of
noise, resampling, format conversion, and desynchronization.
Tampering operations could be accidental due to lossy com-
pression or transmission over noisy communication channel as
well as intentional due to an attacker. In the case of intentional
tampering, the attacker applies a variety of data processing
operations in order to severely limit the ability of the decoder
to recover the embedded watermark signal. Information hiding
methods have numerous applications such as covert communi-
cations, authentication, proof of ownership, customer tracing,
and data embedding. Copyright protection represents the focus
of most of these applications. An extensive description of
the various applications is given in [1]. Over the last decade,
watermarking research has focused mainly on developing news
paradigms for watermark embedding and detection. However,
in the last few years there was less obsession with this goal;
rather, information-theoretic watermarking research began to
emerge [2], [3]. In particular, a theory has recently been devel-
oped to establish the fundamental limits of the watermarking
(data-hiding) problem. Around the same time, Cox et al. [6]
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have also recognized that one may view watermarking as
communications with side information known at the encoder.
This is reminiscent of the communications problem with a
fixed noisy channel, and side information at the encoder [6].
Interestingly enough, Chen and Wornell [7] were the first to
establish the analogy between watermarking and communica-
tions with side information problems. The goal of this paper
is to derive the watermarking (data-hiding) capacity estimates
for balanced multiwavelets using various statistical models for
the host image. Section II outlines the mathematical properties
of balanced multiwavelets and the motivation behind their use
in digital watermarking applications. Section III describes the
basic statistical model for the image watermarking problem.
Then, we will derive the data-hiding capacity for balanced
multiwavelets using various channel models in Section IV.
Performance results of a spread spectrum watermarking sys-
tem based on balanced multiwavelts are outlined in Section V.
Section IV concludes this paper.

II. MULTIWAVELETS AND BALANCED MULTIWAVELETS

Orthogonality is a desirable property for software/hardware
implementation and symmetry provides comfort to image
perception [8]. In the context of image processing applications,
the following three properties are important: 1) orthogonal-
ity to ensure the decorrelation of subband coefficients, 2)
symmetry (i.e., linear phase) to process finite length signals
without redundancy and artifacts, and 3) finite-length filters for
computational efficiency. However, most real scalar wavelet
transforms fail to possess these properties simultaneously.
To circumvent these limitations, multiwavelets have been
proposed where orthogonality and symmetry are allowed to
co-exist by relaxing the time-invariance constraint [8].

A. Multiwavelets

Multiwavelets may be considered as generalization of scalar
wavelets. However, some important differences exist between
these two types of multiresolution transforms. In particular,
whereas wavelets have a single scaling φ(t) and wavelet func-
tion ψ(t), multiwavelets may have two or more scaling and
wavelet functions. In general, r scaling functions can be writ-
ten using the vector notation Φ(t) = [φ1(t)φ2(t) · · ·φr(t)]

T ,
where Φ(t) is called the multiscaling function. In the same
way, we can define the multiwavelet function using r wavelet
functions as Ψ(t) = [ψ1(t)ψ2(t) · · ·ψr(t)]

T . The scalar case
is represented by r = 1. Most of developed multiwavelet
transforms use two scaling and wavelet functions, while r can
take theoretically any value. Similar to scalar wavelets and for
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the case where r = 2, the multiscaling function satisfies the
following two-scale equation:

Φ(t) =
√

2
∞∑

k=−∞
HkΦ(2t− k), (1)

Ψ(t) =
√

2
∞∑

k=−∞
GkΦ(2t− k), (2)

However, it should be noted that {Hk} and {Gk} are 2 × 2
matrix filters defined as:

Hk =
[

h0(2k) h0(2k + 1)
h1(2k) h1(2k + 1)

]
, (3)

Gk =
[

g0(2k) g0(2k + 1)
g1(2k) g1(2k + 1)

]
(4)

where {hk(n)} and {gk(n)} are the scaling and wavelet
filter sequences such that

∑
n h2

k(n) = 1 and
∑

n g2
k(n) = 1

for k = 1, 2. The matrix elements in the filters, given by
(3) and (4), provide more degrees of freedom than scalar
wavelets. However, the multi-channel nature of multiwavelets
yields a subband structure that is different from that using
scalar wavelets.
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Fig. 1. Multiwavelet filter bank using one iteration.

Fig. 1 clearly shows that multiwavelets are defined for
vector-valued signals (1D and 2D). Such vectorizing does
not only introduce a fundamental asymmetry but it yields
an approximation subband that does not represent a coarse
approximation of the input image. The structure of the latter is
different from that obtained using scalar wavelets. In the case
of multiwavelets, the four sub-blocks of the approximation
subband have very dissimilar spectral characteristics [8].

B. Balanced Multiwavelets

Lebrun and Vetterli [8] indicate that the balancing order
of the multiwavelet is indicative of its energy compaction
efficiency. However, a high balancing order alone does not
ensure good image compression performance. For a scalar
wavelet, the number of vanishing moments of its wavelet
function

∫
tmψ(t)dt = 0 determines its vanishing order. For

a scalar wavelet with vanishing order K, the highpass branch
cancels a monomial of order less than K and the lowpass
branch preserves it. For a multiwavelet transform, we have
the similar notion of approximation order; a multiwavelet is
said to have an approximation order of K if the vanishing
moments of its wavelets,

∫
tmψi(t)dt = 0 for 0 ≤ i ≤ r − 1

and 0 ≤ m ≤ K−1. An approximation order of K implies that
the highpass branch cancels monomials of order less than K.
But, in general, for multiwavelets, the preservation property
does not automatically follow from the vanishing moments
property. If the multifilter bank preserves the monomials at the
lowpass branch output, the multiwavelet is said to be balanced
[8]. The balancing order is p if the lowpass and highpass
branches in the filter bank preserve and cancel, respectively
all monomials of order less than p (p ≤ K). Multiwavelets
that do not satisfy the preservation/cancellation property are
said to be unbalanced. For unbalanced multiwavelets, the input
needs suitable prefiltering to compensate for the absence of
the preservation/cancellation property, balancing obviates the
need for input prefiltering; thus, they are computationally more
efficient than the unbalanced multiwavelets. A time-varying
representation of balanced multiwavelets is shown in Fig. 2.
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Fig. 2. Time-varying multiwavelet filter bank. Analysis stage (left). Synthesis
stage (right).

The time-varying filter bank of Fig. 2 is defined by the
following relations:

[
H0(z)
H1(z)

]
= H(z2)

[
1

z−1

]
(5)

[
G0(z)
G1(z)

]
= G(z2)

[
1

z−1

]
(6)

where H0(z) and H1(z) are the Z-transforms of the two
lowpass branch filters h0 and h1. Similarly, G0(z) and G1(z)
are the Z-transforms of the two highpass branch filters g0

and g1. In the time-varying filter bank implementation, the
coefficients of the two lowpass (highpass) filters are simply
interleaved at the output (see Fig. 2). Therefore, a separable
2D transform can now be defined in the usual way as the
tensor product of two 1D transforms [8]. It is worth noting
that unlike their unbalanced counterparts, the sub-blocks of the
approximation subband of balanced multiwavelets have similar
spectral characteristics as shown in Fig. 3 for the case of Lena
image.

III. INFORMATION-THEORETIC DATA-HIDING ANALYSIS

To derive the fundamental limits of watermarking and data
hiding systems, we will follow the framework used in [2],
[3], [4], [5] where no a priori assumptions are made about
the embedding and decoding functions. The recent theory
developed in [3], [5] establish the fundamental limits of the
watermarking (and data hiding) problem. A communication-
like representation of the watermarking problem is shown in
Fig. 4.



Fig. 3. Balanced multiwavelet approximation subband of Lena image (left).
Spectral densities of subband blocks L0L0, L0L1, L1L0 and L1L1 (right).
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Fig. 4. Watermarking system model.

A. Communications Model for Watermarking

In Moulin-Mihçak’s framework [3], [5], the watermarking
system embeds or hides a watermark payload message M in
a length-N host data sequence SN = (S1, · · · , SN ). Side-
information KN = (K1, · · · ,KN ), such as cryptographic
key or host signal-dependant data, may used by the wa-
termark embedding stage. The watermarked data is denoted
by XN = (X1, · · · , XN ) = fN (SN ,M, KN ). Watermark
attackers, modeled by attack channels, intend to remove or at
least make useless the embedded message M . The sequence
Y N = (Y1, · · · , YN ) represents the attacked watermarked
sequence. To derive the data-hiding capacity, we assume that
the host images can be ”correctly” modeled as sequences of
independent and identically distributed (i.i.d.) K-dimensional
Gaussian random vectors S ∼ N (0, R), where R is a K ×
K correlation matrix. In this work, the squared Euclidean
distance, d(x, y) = ||x − y||2, for x, y ∈ <K is used as the
main distortion metric. Data-hiding capacity estimates for the
scalar case, K = 1 (in this case S ∼ N (0, σ2) are presented
in [3]. In this paper, we are mainly interested in the parallel
representation of the outlined problem. Thus, the host data
S is represented by means of K parallel Gaussian channels.
In the latter case, the channel inputs are K independent
sources Sk, 1 ≤ k ≤ K. Each channel Sk is modeled as
a sequence of i.i.d. Gaussian random variables N (0, σ2

k).
Because the watermarking problem can be viewed as a game-
theoretic problem between the data embedder and the attacker
who is an intelligent opponent, game-theoretic analysis of the
watermarking problem has been successfully formulated for
both the scalar and vector cases [4], [5]. In this game-theoretic
framework [5], maximum distortion levels are specified for
both the watermark embedder (D1) and attacker (D2). The

maximum distortion imposed on the watermark embedder is
given by [5]:

EdN (SN , XN ) ≤ D1 (7)

Attacks on embedded watermarks, modeled by specific
channel models, are subject to distortion D2 [5]:

EdN (SN , Y N ) ≤ D2, N ≥ 1 (8)

For a specific length-N data-hiding code, the data-hiding
capacity C(D1, D2) is defined as the supremum of all achiev-
able rates R for distortions (D1, D2) [5].

B. Models of Typical Images

Unlike in the case of unbalanced multiwavelets, the struc-
ture of the subbands emanating from balanced multiwavelet
decomposition have similar structure to that obtained using
scalar wavelet decomposition (refer to Section II for details).
This similarity in subband structure motivates us to investigate
the suitability of well-established statistical models that were
initially designed for scalar wavelets. In these models [9],
[10], subbands’ coefficients are modeled as Gaussian and
generalized-Gaussian processes, respectively, with zero means
and variances that depend on the coefficient location within
each decomposition subband. In [9], it is assumed that the
coefficients’ variances belong to a finite set of values σ2

k, 1 ≤
k ≤ K. In our work, we adopt the technique proposed in [5]
to estimate representative values of σ2

k, 1 ≤ k ≤ K. Fig. 5
shows the resulting 256 parallel channels in Lena image.
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Fig. 5. EQ-estimated 256 parallel Gaussian channels in Lena image.

C. Estimates of Data-Hiding Capacities

In this section, we investigate the data-hiding capacity of
typical natural test images. Analysis results are presented for
four test images, Lena, Barbara, Baboon and Peppers. To
derive the fundamental limits of watermarking and data hiding
systems, we will follow the methodology used in [2], [3],
[4], [5] where no a priori assumptions are made about the
embedding and decoding functions. Capacity estimates for
data-hiding are shown in Table I. Total data hiding capacity is
denoted by NC. NC-Spike represents the same capacity using
the spike model for the subband coefficients [11]. Table I
clearly demonstrates that the BMW transforms yield higher
data-hiding capacity due to the inherent structure of BMW
transforms [8].



Image D1 D2 = 2D1 D2 = 5D1

NC NC-Spike NC NC-Spike
Lena (Daub-8) 10 39911 31856 5305 6952
Lena (9/7 filters) 43006 34215 5986 7377
Lena (BMW BAT-1) 45857 37251 6605 8141
Baboon (Daub-8) 25 81875 72773 15548 15587
Baboon (9/7 filters) 85483 76998 17041 16507
Baboon (BMW BAT-1) 86393 77664 17150 16485
Peppers (Daub-8) 10 51912 35549 6341 6705
Peppers (9/7 filters) 54963 38548 7117 7296
Peppers (BMW BAT-1) 57519 40730 7882 7937
Barbara (Daub-8) 20 32951 35339 5313 7899
Barbara (9/7 filters) 33329 34686 5481 8018
Barbara (BMW BAT-1) 43152 44917 7168 9799

TABLE I

TOTAL DATA-HIDING CAPACITIES (IN BITS) FOR IMAGES OF SIZE

N ×N = 512× 512 USING ORTHOGONAL DAUBECHIES 8, 9/7

LINEAR-PHASE FILTERS, AND BAT-1 BALANCED MULTIFILTERS.
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Fig. 6. Logarithmic BERs of repetition-coding using BMW method and
block DCT for various watermark lengths (M = 128, 256, 512, and 1024).

IV. SIMULATION RESULTS

Using the data hiding estimates reported in this paper,
we run experiments to evaluate the performance of a spread
spectrum watermarking system based on BMW transforms.
We test the performance of the watermarking system using
various test images (Lena, Barbara, Peppers, and Baboon).
Also, we provide comparison with another system based on
block DCT model [12]. Fig. 6 shows the bit error rate (BER)
of the spread spectrum watermarking system using the EQ-
BMW model. It is clear that the proposed system outperforms
that based on a block DCT model [12]. It is worth noting that
while the block DCT model performs watermark decoding
using an ML detector, the BMW-based system uses a simple
correlator for watermark detection. In Fig. 7, we show results
for the performance of the decoder in the presence of additive
white Gaussian noise (AWGN) noise. The watermark message
consists of 128 bits sequence.

V. CONCLUSIONS

In this paper, we have derived capacity estimates of data-
hiding for balanced multiwavelets. Unlike the case of image
coding applications, the inherent structure of BMW decompo-
sition can be used constructively to achieve higher data-hiding
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Fig. 7. Logarithmic BERs of encoded watermark code in the presence of
AWGN noise using a watermark length of 128bits.

capacities. Then, based on these estimates, we have evaluated
the performance of a spread spectrum watermarking system
based on BMW transforms. Performance results clearly how
the inherent structure of BMW transform contribute to the
improvement of watermark robustness.
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