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Abstract 
Pulse-echo reflection techniques are used for 

ultrasonic flaw detection in most commercial instruments. 
As the measured pulse echo signal is assumed to be the 
result of linearly convolving the defect impulse response 
(IR) with the measurement system response, the objective 
is thus, to remove the effect of the measurement system 
through a deconvolution operation and extract the defect 
impulse response. The major drawbacks of conventional 
second-order statistics (SOS)-based decorrvolution 
techniques are their inability to identifi non-minimum 
phase systems, and their sensitivity to additive Gaussian 
noise. Our contribution is to show that higher-order 
statistics (H0S)-based deconvolution techniques are more 
suitable to unravel the effects of the measurement systems 
and the additive Gaussian noise. Synthetic as well as real 
ultrasonic signals are used to support this claim. 

1. Introduction 

Pulse-echo reflection techniques are used for ultrasonic 
flaw detection in most commercial instruments [I]. The 
ultrasonic wave, generated by a piezoelectric transducer 
coupled to the test specimen, propagates through the 
material and part of its energy is reflected if the wave 
encounters an inhomogeneity or discontinuity in its path, 
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while the remainder is reflected by the back surface of 
the test specimen. A typical oscilloscope display is 
shown in Fig. 1. The first wavelet represents the initial 
voltage applied to the transducer in order to generate the 
wave, while the successive echoes represent the voltage 
generated by the reflected wave (from the flaw and the 
back echo respectively) impinging on the transducer. 
The flaw echo in Fig. 1 contains information regarding 
the material discontinuity that the ultrasonic wave has 
encountered in its path. For this, signal processing is 
used on the flaw echo only, and the other echoes are 
discarded from subsequent signal display. 

8 I 

Fig. 1 : Typical oscilloscope display of an ultrasonic 
examination. 
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Flaw echo signals are masked by the characteristics of the 
ineasuring instruments, the propagation paths taken by the 
ultrasonic wave, and are corrupted by additive noise. It is 
assumed that the measured flaw echo is obtained by 
llinearly convolving the flaw or the defect impulse 
response with the measurement system response. 
Deconvolution operation therefore, seeks to undo the 
effect of the convolution and extract the defect impulse 
response which is essential for defect identification. 

Conventional deconvolution techniques (CDT) such as 
1 east square, Wiener filter, and minimum variance 
deconvolution [2] are based on a priori knowledge of 
second-order statistics (SOS) of the noise and the input 
signal. In practice however, the acoustic noise due to 
scattering from the grains inside the propagation medium 
does not have a readily known statistic [3]. Moreover, 
ultrasonic pulse echoes are found to be non-minimum 
phase systems. SOS-based deconvolution techniques, 
being phase-blind cannot therefore, accurately estimate 
the defect impulse response. 

The objective of this paper is to formulate the defect 
ultrasonic model in the polyspectrum domain where the 
processing is more suitable to unravel the effect of the 
measurement system and the additive Gaussian noise. 
‘Thereafter, the defect impulse respons,e is recovered from 
i,ts noise-free polyspectrum. Synthesiized, as well as real 
ultrasonic signals are used to show that the proposed 
technique excels conventional SOS-based deconvolution 
techniques commonly used in NDT. 

:2. Theory 

A measured ultrasonic flaw signal, y(t), can be 
modeled as the convolution of the measurement system 
response function, x(t). with the flaw’s impulse response 
function, h(t), plus noise, N(t). This model can be written 
Xi 

y ( t ) = x ( t ) @ h ( t ) + N ( t )  (1) 
where (8 denotes the convolution operation. With this 
model, defect of a particular geometry would be 
completely characterized by its impulse response. 
]Estimation of h(t) in (I), from the knowledge of y(?, and 
.c(? i s  variously known as system identification, filtering, 
or simply as deconvolution. Many deconvolution 
1 echniques have been developed in different engineering 
areas such as seismic exploration, military applications, 
and medical imaging. Chen [2] has studied the feasible 
;applications of these deconvolution techniques to 
ultrasonic NDT, and has concluded that Wiener filter is a 
:good candidate for such application. The main drawbacks 
o f  CDT are their inability to identify non-minimum phase 
systems, and their optimal implementation requires a 
priori knowledge of the noise statistics. These drawbacks 

can be completely alleviated when using HOS-based 
deconvolution techniques as is shown in this paper. 

Equation (1)  can be written in the polyspectrum 
domain as [4] 

c, ”( Wl, %,. . .> Wn-1) = C,”(W, > %,. . . , wn-1 )H(w,) 
H( w, >. .. N( w,-,)H*( w + w, +... 

N + q - 1  1 + Cf, (w1, W,,. . ., W1,-* 1 
(2) 

where C,’((W~,W~,...,W,-~)~S the nth-order spectrum of 
the signal s(t) (which could be y(t), x ( i ,  or N(i ) ,  H(w) is 
the Fourier transform of the defect impulse response h(t), 
and w is the angular frequency. Without loss of 
generality, (2) can be rewritten as 

C,Y(W,,W, ,... 1 wn4) = C,”(W,,W, ,... ) w,-l)C,h(w,, w,, 
. . ., Wn-1) + c, ( W,, W,, . . . W n - l )  

N 

(3 ) 
For Gaussian noise, the polyspectrum (n>Z), of N(t) is 

zero and thus, the noise-free polyspectrum of the defect 
impulse response can be calculated from (3), and used to 
recover h(0. Alternatively, if the bispectrum is used, i.e., 
n=3 above, then the noise does not have to be Gaussian 
to be filtered out from (2)  and (3). It can have any 
symmetric probability density function (PDF). With one 
of these noise assumptions in mind, equation (2) and (3) 
represent the basis for the HOS-based deconvolution 
technique used in this paper. 

3. Results 

In this section, the HOS-based deconvolution 
technique is tested on synthesized as well as real 
ultrasonic signals obtained from artificial defects [2]. For 
computational efficiency, bispectra of the input-output 
signals are used only. In addition, as the recovery of a 
signal from its bispectrum is not a one-to-one 
transformation, we calculate the bicepstnnn using the 
relationship between bicept” and bispectrum defined 
by Pan and Nikias [5], thereafter, the defect impulse 
response is recovered using the bicepstral parameters [ 6 ] .  

L . 

Fig. 2: The ultrasonic defect model 
3.1 Synthesized Data 
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With reference to Fig. 2, the input signal, x(t), is taken 
as a Gaussian pulse that is amplitude modulating a single 
tone carrier whose frequency lies in the ultrasonic range. 
The noise, N(t), having a normally distributed PDF, is 
scaled by a constant, a , to account for different signal - 
to-noise ratios (SNR). Three different linear time- 
invariant systems are considered in this paper, namely: 

A non minimum phase moving average (MA) system 
whose transfer function is given by 

H M ( z )  = 0 . 2 1 9 7 ~ ~  - 0.7472 + 0.6085 + 0.15332-' (4) 
0 A minimum phase autoregressive (AR) system 

whose transfer function is given by 

0 -  

(5) 
1 

1 - 0.72-' + O . ~ Z - ~  - 0 . 3 ~ ~ ~  
H A R ( Z ) =  

1 

A non minimum phase autoregressive moving 
average (ARMA) system whose transfer function is 
given by 

(6) 
1 - 3.252-' + 3.5399~-~  - 1.2487~-~  

1 - 1.862-' + 1 . 4 7 ~ ~ ~  - 0.5246~-~  
( z>  = 

For a given SNR, the output signal, y(0, is computed 
using the model of Fig. 2. The bispectrum (n=3) of the 
system impulse response (SIR) is obtained from (3), and 
used to recover h(t) using the bicepstral parameters as 
stated above. To test the performance of the proposed 
technique, the variance of the error signal (between the 
true and estimated SIR signals of the MA system above) 
is computed for each SNR. Fig. 3 shows this result for a 
SNR as low as -5 dB. For comparison, a similar error 
variance is computed when the MA SIR is estimated 
using Wiener filter and is shown in the same figure. It can 
be clearly seen that the HOS-based deconvolution 
technique excels its counterpart CDT represented here by 
Wiener filter. 

Fig.3: Error variance of the MA system impulse 
response. 

To quantify the effect of these error variances on the 
estimated MA SIR, a plot of the later at a SNR=5dE3 is 

shown in Fig. 4. It can be seen that while the estimated 
impulse response obtained from the HOS technique is 
faithfully reproduced, the Wiener filter, at an error 
variance of about 2.2, fails completely. 
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Fig. 4: MA system impulse responses obtained from 
HOS ( top), and Wiener filter ( bottom) deconvolution 

techniques for 5 dB SNR. 

To complete this section, the AR and ARMA systems 
as defined by (5) and (6), are tested and their 
corresponding SIR estimated using the proposed 
technique for a SNR= 5 dB, are shown in Figs. 5 and 6 
respectively. 

- 3 ' .  ' ' ' ' ' ' .  . * .  ' ' ' . . . . " 
-20 -10 0 to 20 

Samp(e Number 

Fig. 5: AR system impulse response : true and 
estimated SIR for a SNR = 5 dB. 

Again, the HOS-based deconvolution technique, with 
its potential of preserving the phase information, 
faithhlly reproduces the SIR of both minimum ( Fig. 5) ,  
and non minimum (Fig. 6 )  phase systems even at 
extremely low SNR. The small variations shown in Figs. 
5 and 6 may be attributed to errors made in computing the 
cepstral parameters from the bicepstrum [5]. 
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Sample Number 

Fig.6 : ARMA system impulse response : true and 
estimated SIR for a SNR = 5 dB. 

3.2 Real Ultrasonic Data 

The proposed deconvolution technique is tested using 
real ultrasonic data [2], which is part of a larger data set 
obtained from the Army’s Material Technology 
Laboratory, (Watertown, MA ). The input signal, x(t), is 
measured in practice, from a flawless sample (AO), having 
the same characteristics as the specimen under test. It is 
referred to; sometimes; as the reference signal. Two 
artificial defects are considered; namely a flat-cut ( Al), 
and an angular-cut hole (A2), in aluminum blocks, (see 
[2] for an illustration of these defect geometries). The 
center frequency of the transducer used is 15 MHz, and 
the A-scan signals contain 512 data points digitized at a 
rate of 100 MHz. The pulse-echo signals corresponding to 
AO, A l ,  and A2 samples are represented by T15A0, 
T15A1, and T15A2 respectively. For clarity, the signal 
T15A1 is shown in Fig. 7. 

100 200 300 400 500 +I 
’ 

Time Index 

Fig. 7:Ultrasonic Pulse echo measured from sample A I .  

When the bispectrum-based deconvolution technique is 
applied to real ultrasonic signals, namely; T15A1 and 

T15A2, with T15AO taken as the reference signal, 
smooth, oscillation-free impulse responses are obtained as 
shown in Figs. 8 and 9. For comparison with CDT, the 
reader is referred to [7] where the same signals have been 
used. 

1 

Fig. 8: Impulse response of the flat-cut hole ( A I  1. 
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Fig. 9: Impulse response of the angular-cut hole (A2). 

4. Conclusion 

In this paper, we have shown that the drawbacks of the 
SOS-based CDT are completely removed when HOS- 
based deconvolution techniques are used. Synthesized, as 
well as real ultrasonic signals have been used to 
demonstrate this claim. Although we have focused on a 
non parametric deconvolution technique, and the 
bispectrum case of the polyspectra, higher-order based, 
parametric blind deconvolution techniques can also be 
used to remove the effect of the measured reference 
signal. Future work will be directed towards the influence 
of different reference signal models on the deconvolved 
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defect impulse response using both polyspectra and 
polycepstra of real ultrasonic signals. 
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