
 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 536

ON V&V OF WEB SERVICE ORIENTED ARCHITECTURES

Abdelkader Dekdouk & Tarek H. El-Basuny

College of Computer Science and Engineering,
King Fahd University of Petroleum and Minerals,

KFUPM # 37, Dhahran 31261, Saudi Arabia, Mail Box 413,
Tel: 966-3-860-1967 & Fax: 966-3-860-2174,

Emails: dekdouk@kfupm.edu.sa , helmy@kfupm.edu.sa
Abstract
Now days it is widely accepted that the production of high quality software system requires a combination of
techniques of testing (validation) and formal verification. These techniques have been widely applied in the
development process of different kinds of software architectures. Recently service oriented architectures (SOA)
have been emerged as a promising paradigm for supporting distributed computing. Different research
contributions adopting the technique of testing have been carried out on SOA. However few works using formal
verification have been done on SOA. In this paper we present our approach of formal verification to deal with this
problem and situate it w.r.t. other contributions found in the literature treating this specific area. Our approach
uses the technique of model-checking and simulation to verify the Web services interactions. For that, we use the
modeling language BPEL4WS to describe the orchestration of the execution of Web services. Then we convert it to
Promela, an input specification language of the Spin verifier tool in order to execute a series of verification and
simulation procedures. All this is illustrated with a case study.

Keywords: Web service oriented architecture, Business processes, Validation, Model-based Verification.

1. INTRODUCTION
In the modern distributed application environment, component-based architectures such as COM and CORBA [14,
15] have been the best way to create robust, maintainable and scalable systems for the past ten years. However
these models suffered from a few difficult problems. Different programming languages are not compatible as one
might like. For instance a component written in C++ for use in a C++ environment sometimes has difficulty being
used in an environment where Visual Basic is the main language. But even if the cross-language problems are
fixed, still rem ain a bigger problem. It is difficult to overcome the problem of crossing heterogeneous platforms.
That is calling a COM object from a Java program, or a CORBA object from a Visual Basic application. Cross-
platform interoperability is not easy with the com ponent models we have been using for the past decade. Other
problems arise when calling a foreign object from beyond the firewall. Recently service oriented architectures have
been emerged for supporting distributed computing and to remedy to the problems faced by component -based
architectures. SOA are based on the concept of Web services that are service interfaces described with an XML
meta-language like WSDL [17] or DAML-S [18]. Those Web services interact using XML messaging protocol like
SOAP [19]. A lot of works have been focused on how to build such architectures [20, 21, 22, 23], and less work has
been invested how to verify and validate such systems could be done [1, 2, 29, 30]. Even in this research domain
we can claim that the works on formal verification [8, 9, 10] is less comparatively to what has been tackled in the
side of validation [3, 4, 5, 6, 7]. The purpose of this paper is to present our approach of formal verification that has
been initiated in [10]. This approach permits to verify the composition of Web services represented as business
processes and the interactions between these business processes. For that we define an automatic conversion
relationship between the language BPEL [11] used to describe business processes, and Promela language [12, 13]
widely used to describe processes of distributed systems. Therefore any BPEL description can be automatically
translated to a Promela description which in turn is feed to XSpin [13] verifier tool in order to execute upon it
different verification procedures. This paper is organized as follows: In Section 2, we present the related works in
the domain of testing of SOA, followed in Section 3 by the works undertaken on formal verification of such
systems. In Section 4, we present our approach of verification of SOA, particularly model-based verification of
interacting BPEL Web services using the XSpin verifier tool. In Section 5, we outline some concluding remarks
and future works.

2. TESTING SERVICE ORIENTED ARCHITECTURES
In this section we discuss some current integration and testing techniques of Web services and service oriented
applications. In [3], the authors proposed an approach investigating how automatic testing can be done on SOA
systems. They defined an XML meta-language to describe test cases for services integration and they conceive d a
prototype tool called SITT (Service Integration Test Tool). SITT can automatically test and monitor whether the
workflow between multiple service endpoints really behaves as expected, by analyzing the message flow. Each
service endpoint is associated with a test agent, once the test case is executed, the test agent read the result stored in
a standardized log file. Then this information is parsed and sent to the master agent. The master agent store the
messages in a test database, which are then analyzed by the test daemon against predefined test behavior described

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 537

in XML meta-language. Other testing approaches in service oriented computing consist in testing Web services as
black boxes. In [4] a tool that is called Coyote is developed to support this approach and consists of two parts: the
test master and test engine. The test master allows testers to specify test scenarios via WSDL description of a Web
service. The test engine interacts with the Web service under testing, by invoking it with the parameters specified in
the test script, and then validates the Web service response with the expected result and logs assessing results. This
work has been extended in [5], by presenting a concept of how WSDL could be extended to capture four kinds of
information description: input-output dependency, invocation sequence, hierarchical functional description and
concurrent sequence.

3. VERIFICATION OF SERVICE ORIENTED ARCHITECTURE
In the area of verification the works have mainly focused on the analysis of interaction of composite Web services
described in a Web services orchestration language [11, 18, 24]. In [27] the authors take a subset of the language
DAML-S and provide it with an operational semantics described using Petri Nets. The tool KamaSim [25] is then
used to carry out a series of simulations and property verifications on Petri Nets descriptions. The verification
approach undertaken in [9] consists first in specifying a set of Web services requirement with a series of Message
Sequence Charts. The composite Web services, is implemented with a BPEL process which is verified against the
Web service requirement specificat ion. The approach defined in [26] provides a subset of BPEL with an operational
semantics using guarded automata. The latter formalism is then converted to Promela that is the input language for
the Spin tool. This approach is similar to what we have introduced in [10], however in our work the conversion
BPEL-Promela is done without passing by an intermediate formalism .

4. OUR APPROACH OF VERIFICATION
4.1 The language BPEL4WS
BPEL4WS [11, 28] is a specification language that models the business process behavior based on Web services.
The business process can be of two kinds: executable processes and abstract processes or business protocols.
Executable processes model actual behavior of a participant in a business interaction. Abstract processes specify the
external behavior of the participant interacting with each other. Precisely they describe the mutually visible
message exchange behavior of each of the participant involved in the protocol, without revealing their internal
behavior. The BPEL business process XML-syntax along with short element definitions (provided as comments) is
given as follows:

< process … >
<partners>…< /partners>
<!— services, the process interact with - ->
<containers>…</containers >
<!-- Data used by the process -->
<correlationSets>... </correlationSets>
<!-- Used to support asynchronous interactions -->
<faultHandlers>...</faultHandlers>
<!-- Alternate execution path to deal with faulty conditions -->
<compensationHandlers>...</compensationHandlers><!--Code to execute when "undoing" action-->
(activities)*
<!--The internal behavior of the process-->
</process … >

The activities can be inductively defined as a set of basic activities that can be combined with control flow
elements. Some of the basic activities are: < invoke> that permit to a process to invoke an operation on a partner.
<receive> allows a process to receive an invocation from a partner. <reply> permits to a process to send a reply
message corresponding to a partner invocation. <assign> performs the data assignment between containers. The
control flow elements are: <sequence> that permits to execute activities sequentially. <flow > allows the execution
in parallel of a set of activities. <while> allows a set of activities to execute iteratively while a certain condition is
satisfied. <pick > permits to execute one of the several activities that are guarded by events. <link > defines a
synchronization dependency between a source activity and a target activity. <switch > enables branching one
activity from a set of conditional alternatives. For more details on the language we refer the reader to [11]. In the
conversion BPEL-Promela, we focus more on the activities definitions that describe the actual behavior of the
business process. Next, we present a case study showing that.

4.2 Conversion BPEL-Promela through a Case Study

This is an example of a loan approval business process combined of several Web services. First, customer
information is received and his/her account is examined. If the amount of money in the customer’s account is less
than 10,000 then this loan request is transferred to a loan assessment Web service where the risk is assessed.
Otherwise the loan request is approved and replied back to the customer. The assessment procedure checks, if the
risk is ‘low’ then the request is approved. Otherwise the loan request will not be accepted. The flow chart of this
process is depicted in F igure 1.

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 538

Figure 1: The flow chart of the loan approval process

The following (see Figure 2) is the BPEL code of the loan approval process. As shown by this description, the
process defines four XML-data variable: request, riskAssessment, approvalInfo and error and it is interacting with
three partners: customer, approver and assessor . The process represents a parallel execution of the following
activities: receive1 that is the task receiving an invocation of the operat ion approve with the data stored in the
variable request from customer. If amount is less than 10000 then a link (a synchronization relationship) called
receiveToAssess is generated otherwise a link receiveToApp is set and both channels have the task receive1 as a
source. The activity invokeAssessor representing the target of the link receiveToAssess, invokes the operation check
with the input parameter request. The result of the operation must be delivered in the variable riskAssessment. If the
content of riskAssessment is ‘low’ then a response ‘yes’ is assigned to the content of the element accept in the
container approvalInfo. This is followed by the execution of the reply activity to the customer corresponding to the
operation approve with the result stored in the variable approvalInfo . If the risk is not ‘low’ or the account amount
is greater than 10000 then invokeApprover invokes the operation approve from the partner approver , generating
thus the data that is stored in approvalInfo and which is then replied to customer.
<?xml version="1.0" encoding="utf-8" ?>
<process name="loanApprovalProcess"

targetNamespace="http://acme.com/loanprocessing"
suppressJoinFailure="yes"
xmlns="http://schemas.xmlsoap.org/ws/2002/07/business -process/"
xmlns:lns="http://loans.org/wsdl/loan-approval"
xmlns:loandef="http://tempuri.org/services/loandefinitions"
xmlns:asns="http://tempuri.org/services/loanassessor"
xmlns:apns="http://tempuri.org/services/loanapprover ">

<containers>
 <container name="request"
messageType="loandef:creditInformationMessage"/>
 <container name="riskAssessment"
messageType="asns:riskAssessmentMessage" />
 <container name="approvalInfo"
 messageType="apns:approvalMessage" />
 <container name="error"
messageType="loandef:loanRequestErrorMessage"/>
</containers >
<partners>
 <partner name="customer"
 serviceLinkType ="lns:loanApprovalLinkType"
 myRole="approver " />
 <partner name="approver"
 serviceLinkType ="lns:loanApprovalLinkType"
 partnerRole="approver" />
 <partner name="assessor"
serviceLinkType="lns:riskAssessmentLinkType"
 partnerRole="assessor" />
</partners>
<faultHandlers>

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 539

 <catch faultName="lns:loanProcessFault"
 faultContainer="error">
 <reply partner="customer"
 portType="apns:loanApprovalPT"
 operation="approve" container="error"
 faultName="invalidRequest " />
 </catch>
</faultHandlers>
<flow>
<links>
 <link name="receiveToAssess" />
 <link name="receiveToApp" />
 <link name="appToReply" />
 <link name="assessToSetMsg" />
 <link name="setMsgToReply" />
 <link name="AssessToApp" />
</links>
<receive name="receive1 " partner="customer"
 portType="apns:loanApprovalPT" operation="approve"
 container="request"
 createInstance="yes">
 <source linkName="receiveToAssess"
transitionCondition="bpws:getContainerData('request', 'amount')<10000"/>
 <source linkName="receiveToApp "
transitionCondition="bpws:getContainerData('request', 'amount')>=10000 "/>
</receive>
<invoke name="invokeAssessor" partner="assessor"
 portType="asns:riskAssessmentPT" operation="check" inputContainer="request"
 outputContainer="riskAssessment">

<target linkName="receiveToAssess" />
<source linkName="assessToSetMsg"

 transitionCondition="bpws:getContainerData(riskAssessment', 'risk') ='low'" />
 <source linkName="assessToApp"
 transitionCondition="bpws:getContainerData('riskAssessment', 'risk')!='low'" />
</invoke>
<assign name="assign ">
 <target linkName="assessToSetMsg" />
 <source linkName="setMsgToReply" />
 <copy>
 <from expression="'yes'" />
 <to container="approvalInfo" part="accept" />
 </copy>

</assign>
<invoke name="invokeapprover" partner="approver"
 portType="apns:loanApprovalPT" operation="approve"
 inputContainer="request"
 outputContainer="approvalInfo">
 <target linkName="receiveToApp" />
 <target linkName="assessToApp" />
 <source linkName="appToReply" />
</invoke>
<reply name="reply" partner="customer"
 portType="apns:loanApprovalPT"
 operation="approve" container="approvalInfo">
 <target linkName="setMsgToReply" />
 <target linkName="appToReply" />
</reply>
</flow>
</process>

Figure 2: The BPEL description of the loan approval process
The strategy, we followed in the conversion BPEL-Promela is more focused on the description of the messages
flow. It consists in mapping each basic activity to a process. Links represent synchronization relationships and
hence they correspond to channels. In principle the containers correspond to variables of type XML-message.
However due to the uniformity of this type and the expressivity restrictions we have in Promela types, we consider
the containers as constants. The activities are controlled with the construct <flow> meaning that the processes run
concurrently. In the case where the activities are executed sequentially (i.e. using the construct <sequence>), we
create a channel of size 0 connecting the corresponding processes. For more details on the conversion BPEL-
Promela, we refer the reader to [10]. Hereafter, we present the Promela description corresponding to the above
BPEL loan approval process with a snapshot of the tool performing the automatic BPEL-Promela conversion and
which has as front end XSpin verifier tool (see Figure 3).

mtype = {request, riskAssessment, approvalInfo, error, low};
mtype msg, risk;
byte amount=0;
chan receiveToAssess = [4] of { mtype };
chan receiveToApp = [4] of { mtype };
chan appToReply = [4] of {mtype};
chan assessToSetMsg =[4] of{mtype};
chan setMsgToRepl y = [4] of{mtype};

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 540

chan assessToApp =[4] of {mtype};
proctype receive1(){
msg = request;
do
 ::(amount < 10000) -> receiveToAssess ! msg;
 ::else-> receiveToApp ! msg;
od
}
proctype invokeAssessor() {
do
 ::receiveToAssess ? [msg]->receiveToAssess ? msg;
 if
 ::(risk = low) -> msg = riskAssessment; assessToSetMsg ! msg;
 ::else -> msg = riskAssessment; assessToApp ! msg;
 fi;
 ::else -> skip
od
}
proctype assign() {
do
 ::assessToSetMsg ? [msg] ->
 assessToSetMsg ? msg;
 msg = approvalInfo
 setMsgToReply! msg;
 ::else -> skip
od
}
proctype invokeApprover() {
do
 ::assessToApp ? [msg] -> assesToApp ? msg;
 msg = approvalInfo; appToReply ! msg;
 ::receiveToApp ? [msg]->receiveToApp ? msg;
 msg = approv alInfo; appToReply ! msg;
 ::else -> skip;
od
}
proctype reply() {
do
 ::appToReply ? [msg] ->appToReply ? msg;
 ::setMsgToReply? [msg] -> setMsgToReply ? msg;
 :: else -> skip
od
}
init {
run receive1();
run invokeAssessor_proc();
run assign();
run invokeApprover();
run reply();
}

4.3 Model Checking and Simulation with XS pin
In this section we discuss the verification and simulation of the loan approval process. We take the Promela code
corresponding to the loan approval business process; feed it to XSpin along with the specification of LTL properties
to check them on our model. Consider the loan approval example, and the following basic properties: p = (msg =
‘request’) and q = (msg = ‘approvalInfo’). Using these proposit ions, we can check for instance the liveness
property [](p -> <> q) which means that always, if we have a message ‘request’ sent through the channel
receiveToAssess and contained in a variable named msg then eventually we receive a message ‘approvalInfo’
through either the channel setMsgToReply or appToReply again contained in the variable msg. Checking this logical
formula with XSpin on our Promela model using the integrated tool XSpin, ensures a liveness property of our
BPEL model. In order to check the above liveness property, XSpin first negates the property then searches for any
occurrence at some state where the property is true. If it’s the case, then the property is satisfied. Hereafter is the
result of the verification of the mentioned property on the loan approval model, which shows the satisfaction of the
liveness property.
(Spin Version 4.1.3 -- 24 April 2004)
Warning: Search not completed
 + Partial Order Reduction
Full statespace search for:
 never claim +
 assertion violations + (if within scope of claim)
 acceptance cycles + (fairness disabled)
 invalid end states - (disabled by never claim)
 State-vector 72 byte, depth reached 512, errors: 1(*the property is found to be true*)
 277 states, stored (278 visited)
 250 states, matched
 528 transitions (= visited+matched)
 0 atomic steps
hash conflicts: 0 (resolved)
max size 2^18 states

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 541

Running the verification generated by XSpin with the option -DSAFETY to check for the cycles in the model, which
eventually leads to livelocks, guarantees the safety of the model. Hereafter is the result of the safety verification,
which shows that our model does not contain deadlocks behaviors.

(Spin Version 4.1.3 -- 24 April 2004)
 + Partial Order Reduction
Full statespace search for:
 never claim - (none specified)
 assertion violations +
 acceptance cycles - (not selected)
 invalid end states +
State-vector 68 byte, depth reached 7013, errors: 0 (* means no deadlocks*)
 32460 states, stored
 89745 states, matched
 122205 transitions (= stored+matched)
 0 atomic steps
hash conflicts: 2352 (resolved)
(max size 2^18 states)

XSpin also allows us to simulate symbolically our models. In Figure 4, we present a snapshot of the simulation of
our Promela model of the Loan Approval process.

Figure 3: A snapshot of the BPEL4WS verification integrated environment

Figure 4: Simulation of Promela model of the loan approval example

5. CONCLUSIONS
In this paper, we have presented our approach of verification of BPEL model and situated it in the context of the
different contributions undertaken in the area of verification and validation of Web services oriented architectures.

 Second International Conference on Intelligent Computing and Information Systems
March 5-7 2005 Cairo, Egypt

 542

The concept of SOA is new and there exist many challenges for applying verification and testing techniques to
SOA. Our next step is to finalize our prototype by extending our BPEL-Promela conversion prototype to some
omitted BPEL constructs including the fault handler and the correlation elements. Another interesting direction for
future research is to link the language BPEL to other verification and testing tools like TGV and TorX [31, 32]
developed to deal with the distributed system testing.

6. ACKNOWLEDGMENTS
We would like to thank King Fahd University of Petroleum and Minerals for funding this research work and
providing of the computing facilities, special thanks to anonymous reviewers for their valuable comments on this
paper.

7. REFERENCES

1. Grumberg, O., Clarke, E. M., Peled, "Model Checking", MIT Press, Cambridge, MA, 1999.
2. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen, "Systems and Software

Verification: Model-Checking Techniques and Tools", Springer Verlag, 2001.
3. S. Dustdar, S Haslinger, "Testing of Service Oriented Architectures–A practical approach", Net.ObjectDays,

September 2004, Germany, Springer LNCS.
4. W.T.Tsai, R. Paul, W. Song, Z. Cao, "Coyote: An XML-Based Framework for Web Services Testing", 7th IEEE

International Symposium on High Assurance Systems Engineering (HASE'02). Japan, Oct. 2002.
5. W.T. Tsai, R. Paul, Y. Wang, C. Fan, D. Wang, "Extending WSDL to Facilitate Web Services Testing", 7th IEEE

International Symposium on High Assurance Systems Engineering, Japan, October 2002.
6. Y. Li, M. Li, J. Yu, "Web Services Testing, the Methodology, and the implementation of the Automation-Testing

Tool", Grid and Cooperative Computing Workshop 2003, China, December 2003.
7. C. Fu, B. Ryder, A. Milanova, and D. Wannacott, "Testing of Java Web Services for Robustness", Proceedings of the

International Symposium on Software Testing and Analysis, July 2004.
8. S. A. McIlraith, S. Narayanan, "Simulation, verification and automated composition of Web services", In Proceedings

of the 11th International World Wide Web Conference. ACM, November 2002.
9. Foster, S. Uchitel, J. Kramer, and J. Magee. "Model-Based Verification of Web Services Compositions", Presented at

Automated Software Engineering (ASE) Conference 2003, Canada, Oct. 2003.
10. Al-Gahtani, B. Al-Muhaisen, A-E-K. Dekdouk, "A Methodology and a Tool for Model-based Verification and

Simulation of Web Services Compositions", IEEE Int. Conference on Informat ion & Computer Science, KSA, 2004.
11. Business Process Execution Language for Web Services (BPEL4WS), Version 1.1.
12. G. J. Holzmann, "Design and Validation of Computer Protocols", published by Prentice Hall in Nov. 1990
13. G. J. Holzmann, "The SPIN Model Checker: Primer and Reference Manual", Addison Wesley, Massachusetts, 2003.
14. Microsoft Corp. DCOM Technical Overview.
15. M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee and R. Stafford. "Patterns of Enterprise Application

Architecture", Addison Wesley Professional, 2002.
16. S. T. Albin, "The Art of Software Architecture", Design Methods and Techniques, Wiley, 2003.
17. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, "Web service description language 1.1", W3c, 2001.
18. H. Zeng, A. Ankolekar, M. Burstein, "DAML-S: Semantic mark-up for Web services", In Proceedings of the

International Semantic Web Working Symposium (SWWS 2001), November 2001.
19. M. Gudgin, M. Hadley, N. Mendelsohn, J- J. Moreau, and H.F. Nielsen, "SOAP Version 1.2 Part 1: Messaging

Framework", W3C Recommendation. Technical report, W3C, June 2003.
20. J. Bloomberg, "The SOA Implementation Framework. The Future of Service-Oriented Architecture Software",

Technical Report April 2004.
21. G. Miller, ".NET vs. J2EE", Communication of the ACM, 46(6):64-67, June 2003.
22. D. Lowe, et al. BizTalk(TM) Server: The Complete Reference. November, 2001.
23. Collaxa, "WSOS 2.0: An Introduction". http://xml.coverpages.org/CollaxaWP-200209.pdf
24. S. Thatte, "XLANG - Web Services for Business Process Design. Microsoft Corporation", May 2001..
25. S. Narayanan, "Reasoning about Actions in Narrative Understanding", Proc. International Joint Conference on

Artificial Intelligence (IJCAI''99), pp. 350-358, 1999.
26. X. Fu, T. Bultan and J. Su, "Analysis of Interacting BPEL Web Services", Int. WWW Conference, June 2004.
27. S. Narayanan, S. McIlraith (2002). Simulation, Verification and Automated Composition of Web Services, Eleventh

International World Wide Web Conference (WWW2002), Honolulu, May 2002.
28. S. Weerawarana, C. Francisco, “Understanding BPEL4WS, Part 1”, IBM developer Works, August 2002.
29. S. Burton: Testing Safety-Related Software: a Practical Handbook, by S. Gardiner (Editor), Springer-Verlag, 1999

(Book Review). SW Testing, Verification Reliability 9(2): 135-136 (1999).
30. S. Burton, J. Clark, A. Galloway and J. McDermid, "Automated V&V for High Integrity Systems: A Targeted Formal

Methods Approach", In the Proceedings of the 5th NASA Langley Formal Methods Workshop. June 2000.
31. Jard and T. Jéron, "TGV: theory, principles and algorithms", In Proc. of the 6th world conference on integrated design

and process technology, 2002.
32. Automated Model Based Testing, J. Tretmans and E. Brinksma Editors: M. Schweizer, Progress 2002 - 3rd Workshop

on Embedded Systems, STW Technology Foundation, Utrecht, the Netherlands, pp. 246 - 255, 2002.

