ICS 103: Computer Programming in C

Spring Semester 2010 (Term 092)
Lab #8: Functions with Output Parameters & Recursive Functions
Objective:

· Learn how to write functions that return more than one result.
· Learn how to write recursive functions.
Functions with output arguments
From the previous lab, we know how to write a function that receives arguments (input arguments) and returns a single result using the return statement. There are many situations where we would like a function to return more than one result. Here are some examples:

· Function to convert time in seconds into hours, minutes and seconds

· Function to find the quotient and remainder of a division

· Function to return maximum, minimum and average from a set of values
The return statement cannot be used to return more than one value, i.e. we cannot have the following statement:

return value1, value2;

Also, we cannot have two return statements following each other as:

return value1;

return value2;
The solution in these cases is to make the return type of the function void i.e. the function does not use the return statement to return the results. Instead, the results will be returned through the arguments (output arguments). In contrast to input arguments which are normal variables, output arguments must be pointer variables. When pointer variables are used as arguments, they allow the called function to access the variables created in the calling function. Thus, the results can be stored directly in these variable while the execution is in the called function.
The following example shows how functions with output arguments work.

#include <stdio.h>
#define PI 3.14
void area_circum (double radius, double *area, double *circum);

int main (void)
{
double radius, a, c;

printf ("Enter the radius of the circle > ");

scanf ("%lf", &radius);

area_circum (radius, &a, &c); // function call

printf("The area=%f and circumference is %f\n",a,c);

return 0;

}

void area_circum (double radius, double *area, double *circum)
{
*area = PI * radius * radius;

*circum = 2 * PI * radius;

}

The function area_circum is to return the area and circumference of a circle (2 results) given its radius. Since we want the function to return 2 results, the return type will be void and we need 2 output arguments which must be pointers (*area and *circum). In the calling function (main), we declare 2 normal variables (a for area and c for circumference). Notice in the call, the actual arguments are the addresses of the variables a and c. Once the execution return to the calling function (main), the values of area and circumference are stored in the variables a and c.
Recursive function

A recursive function is a function that calls itself. Recursion is a powerful tool in problem solving and programming. The strategy in recursive solutions is called divide-and-conquer. The idea is to keep reducing the problem size until it reduces to the simple case which has an obvious solution.

Recursive functions generally involve an if statement with the following form:
if this is a simple case (Base case)

solve it

else

redefine the problem using recursion

Redefine the problem using recursion means express the solution of the current problem in terms of a solution of a similar problem but with smaller size. We keep repeating this process until we reach the base case (Expansion phase). Since the solution for the base case is known, now we do back substitution until we go back to the original case for which we were seeking the solution (Substitution phase).
Exercises:

1) Write a program that computes the area and perimeter of a rectangle using 2 functions. One function is used to read the width and length, and the other to compute the area and perimeter. Write a main function to test your functions.

2) Write a function that receives a time in seconds and returns the equivalent time in hours, minutes, and seconds. Write a main function to test your function. For example if the received time is 4000 seconds, the function returns 1 hour, 6 minutes, and 40 seconds. Hint: Use integer division and remainder.

3) Write a recursive function Reverse that receives a positive integer number and prints it on the screen in reverse order as shown below. Write a main function for testing.

[image: image1.png](Inactive

CWIN\BIN\NONAMEOO. EXE) !

Enter a positive integer number >123% 4|
4321

4) Write a recursive function Countdigits that receives an integer number and returns how many digits it contains. Write a main function to read an integer number and tests your function.

Note: For problems 3 & 4, you have to think recursively, like this:
Reverse(x) = x if x is a one-digit number

Reverse(x) = ones digit of x followed by Reverse(x / 10)

