ICS 103 – Computer Programming in C

Spring Semester 2010 (Term 091)

Lab # 11 Searching & Sorting

Objective:
· Learn how to search in arrays.

· Learn how to sort an array.
Searching:

A common problem encountered in programming is the need to search an array in order to find the location of the desired value. Suppose you are looking for a student with ID 995203 in a list of ID’s, then you search for this ID in the list from the beginning till you find it or reach the end of the array and the ID is not there. The searching algorithms we will use are linear search and binary search and these work as follows:

Linear search (Sequential Search):
This is a general search strategy. Here, we search for the element by scanning the array from beginning to end. If we find the target element in the array, we stop searching and return the position of the element in the array; otherwise, we continue till the end of the array. If we reach the end of the array and did not find the target, the search returns –1 as indication that it is not in the array.

This is the code of linear search:
int linear_search(int a[], int n, int key)
{ int i;

for(i = 0; i < n; i++)

if(key == a[i]) return i;

return -1;

}
Binary search:
If the array we are searching is sorted in increasing order, then we can use a better strategy than linear search to look for the target element. The binary search makes use of the fact that the elements are ordered and does not scan the whole array. The steps of binary search are summarized as follows:

1. if the middle element m is equal to the target, then return its position and we are done.
2. else:
a. if the target < middle element, then look at the first half of the array and repeat step 1.
b. if the target > middle, then look at the second half of the array and repeat step1.
c. if the array is exhausted, then the target is not in the array and the search returns -1.
The following figure explains the process of binary search:

[image: image1.png]first mid last

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]a[11]

4 7|8 10 [14| 21 | 22 36|62 77 | 81 | 91

“haa

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] a[11]

4 7|8 10 | 14 | 21 36

62
*g o

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10]a[11]

4 7 | 8 [10 36 |62 | 77 | 81 | 91

first mid last .
N (1 | &2

Function terminates

In the implementation, we use two variables (first and last) that indicate the start and the end of the sub array. Through first and last we can get the middle element and specify the boundary of the array for the next pass if we do not find the target in the current pass.

This is code for binary search:

int binary_search(int x[], int first, int last, int key) {
int middle;

if(last<first) return -1; // key not in array

middle=(first+last)/2;

if(key==x[middle]) return middle;

else if (key<x[middle])

return binary_search(x,first,middle-1,key);

else

return binary_search(x,middle+1,last,key);
}

Sorting:
Another interesting programming problem is to sort the elements of an array in increasing or decreasing order. The use of sorted arrays is very obvious. Having sorted records makes it easier to locate a particular element. Also if you want the output of these records (for example students ID’s along with their grades) to be displayed on screen sorted, then using a sort strategy becomes necessary
Selection Sort:
Selection sort is a simple straightforward algorithm to sort an array of numbers and it works as follows. First, we find the minimum element and store it in A[0]. Next, we find the minimum of the remaining elements and store it in A[1]. We continue this way until the second largest element is stored in A[size – 1]. The following figure explains the process of selection sort:

[image: image2.png]23

78

45| 8

32 |56

Unsorted

78| 45| 23

32| 56

Unsorted

23

45 (78|32

56

Unsorted

23

32

v v
78145

56

Sorted

Unsorted

vy

23

32 (45

78 | 56

Sorted

23

32|45

56 (78

Sorted

Original list

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

This is the code for selection sort:

void selection_sort(int x[], int size)
{
int k,j,minpos,temp;

for (k=0; k < size - 1; k++)

{ minpos = k; // initialize location of min value

//go over the elements to find location of min. value

for(j = k+1; j < size; j++)

if(x[j] < x[minpos]) minpos = j;

// end of for j loop

// swap the element at minpos with the one at index k

temp = x[minpos];

x[minpos] = x[k];

x[k] = temp;

} // end of for k loop
}

Lab Work:
Problem 1:
Write a program that will generate an array of 10 integer numbers from 0 to 30 using the function rand() (in stdlib.h library). The function rand() returns a random number from 0 to RAND_MAX which is the maximum value in the int type. In order to limit the range of the number to be from 0 to n, reduce the returned value % (n+1). By using rand() only, your program will generate the same sequence during each execution. To avoid this problem insert the following statement at the beginning of your main function:

srand(time(NULL));

 Prompt the user to enter a target value (between 0 and 30) to check if it is present in the array by using linear search. If present your program should display its position, otherwise, print a message saying that the value is not in the array.

Problem 2:
The binary search function shown above is recursive; rewrite the same function using a while-loop instead of recursion. To test your iterative binary search function repeat question 1 by using binary search instead of linear search.
Note: you should sort your array before searching
Problem 3:
Write a logical function sorted_inc() that receives an array of int values and n representing the number of values. The function will return 1 if the array values are sorted in increasing order, 0 otherwise.
Write a similar function sorted_dec() to check if the array values are sorted in decreasing order or not.
Write another version of selection_sort; selection_sort_dec so that it sorts the array in decreasing order.
Write a program that will generate an array x1 of 20 random integer values from 1 to 100. Use similar procedure as in question 1, but now the lower value is not 0. Print the array on the screen. Check if it is by chance sorted in increasing or decreasing order by using the functions sorted_inc and sorted_dec. If the array is not sorted (this is what is expected), sort the array by using the original and modified selection sort functions, i.e. increasing and decreasing. Print your array after each sorting.

