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Abstract. Galois connection in crisp binary relations has proved to be useful for several applications
in computer science. Unfortunately, data is not always presented as a crisp binary relation but may be
composed of fuzzy values, thus forming a fuzzy binary relation. This paper aims at defining the notion of
fuzzy galois connection corresponding to a fuzzy binary relation in two steps: firstly by defining the term
fuzzy maximal rectangle and secondly, by extending the galois lattice structure to fuzzy binary relations.
Applications concerning discovery of fuzzy association rules and decision making are also presented.
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1 Introduction

Galois lattice structure and galois connection have shown their usefulness for several applications in computer
science. Several papers have been published in different applied journals using the galois lattice structure of
a crisp binary relation for learning, classification, information retrieval, reasoning, finding additional infor-
mation, object oriented programming, database organization and automatic entity extraction [1, 2, 4].

Unfortunately, data is not always presented as a crisp binary relation but may be composed of fuzzy
values, thus forming a fuzzy binary relation.

In their previous attempts at fuzzy binary relation decompostion, the authors defined and extended the
notion of difunctionality to fuzzy binary relations [7]. This paper aims at defining the notion of fuzzy galois
connection corresponding to a fuzzy binary relation in two steps: firstly by defining the term fuzzy maximal
rectangle and secondly, by extending the galois lattice structure to fuzzy binary relations.

This paper is organized as follows: In Section 2, the fundamental operations and properties of fuzzy sets
are recalled. In Section 3, the mathematical definitions and properties of a classical galois lattice structure
are recalled. In Section 4,the notion of a fuzzy maximal rectangle is defined; then a galois lattice structure is
mathematically extended to fuzzy binary relations and fuzzy galois connection is defined. In Section 5, appli-
cations of fuzzy galois connection to the discovery of association rules and decision making using classification
are given.

2 Mathematical Background

Here we review some definitions and results that will be needed in the sequel. For details we refer to [6, 7]

2.1 Fuzzy Sets

Let U be a set, called the universe of discourse. An element of U is denoted by lowercase letters.
A fuzzy set is defined as a collection of elements x ∈ U which includes a degree of membership for each of

its elements. The membership degree for each element lies within the range [0, 1]. It may also be expressed
by a membership function.



Example 1. If U = {p, q, r} then X̃ = {p/0.5, q/0.1, y/0.9} is an example of a fuzzy set. The degrees of

membership of p, q and r in X̃ are 0.5, 0.1 and 0.9 respectively. The fuzzy values 0.5, 0.1 and 0.9 determine
the strength of membership of a particular element. Here, r with a membership degree of 0.9 has a strong
membership of X̃.

Crisp sets can be defined as special cases of fuzzy sets with the membership degrees restricted to the
values of 0 and 1 only.

Example 2. If U = {a, b, c} then Y = {a, b} is an example of a crisp set. The elements a and b are called
members of the set Y . Y can also be written as a fuzzy set with membership degrees restricted to the values
of 0 and 1 only. Thus Y = {a/1, b/1, c/0} is another way of expressing the set Y .

2.2 Basic Set-Theoretic operations on Fuzzy Sets

The fundamental set-theoretic operations on fuzzy sets which are of concern to us are inclusion, union,
intersection.

A fuzzy set Ã is said to be included in another fuzzy set B̃ if ∀x ∈ Ã ∃x ∈ B̃ | µÃ(x) ≤ µB̃(x).

The membership function µC̃(x) of the intersection C̃ = Ã∩ B̃ is defined by µC̃(x) = min{µÃ(x), µB̃(x)}.
The membership function µD̃(x) of the union D̃ = Ã ∪ B̃ is defined by µD̃(x) = max{µÃ(x), µB̃(x)}.

2.3 Cartesian Product

The cartesian product of a crisp set with a fuzzy set is an important notion as it will be used to define the
notion of a fuzzy maximal rectangle. Since a crisp set can be defined as a fuzzy set with membership values
equal to 0 or 1 only, so, the cartesian product R̃ = A× B̃ is defined by

R̃ = {(x, y)/min(µA(x), µB̃(y)) | ∀x ∈ A, y ∈ B̃} (1)

Example 3. Consider A = {a/1, b/0} and B̃ = {p/0.1, q/0.9}. So R̃ = {(a, p)/0.1, (b, p)/0, (a, q)/0.9, (b, q)/0}.
The resulting relation R̃ is a fuzzy binary relation.

3 Classical Galois Lattice

In this section, we start by presenting some formal properties of rectangular relations. Along all this section
and the following ones, J stands for any set of indices.

Definition 1. Let R be a binary relation defined on a set E. A rectangle A×B is a cartesian product of two
sets (A,B) such that A×B ⊆ R.A is the domain of the rectangle (A,B) and B is its range.

Definition 2. Let (A,B) be a rectangle of a given relation R defined on a set E. The rectangle (A,B) is
said to be maximal if whenever A×B ⊆ A′ ×B′ ⊆ R, then A = A′ and B = B′.

In[5], the authors showed that, using an order relation (≪), the set of rectangles of a binary relation R
can be organized under a complete and distributive lattice.

Definition 3. Let R be a binary relation defined on a set E and Tr the set of rectangles of R ordered by the
relation ≪. (Tr,≪) is a complete and distributive lattice with the smallest element (∅, E) and the biggest one
(E, ∅), and where the supremum P and the infinimum H of any set of rectangles of Tr are given respectively
as follows :

Pj∈J(Aj , Bj) = (∪j∈JAj ,∩j∈JBj) (2)

Hj∈J(Aj , Bj) = (∩j∈JAj ,∪j∈JBj) (3)



3.1 Galois Connection in Crisp Binary Relations

Let R be a binary relation defined on a set E. For two sets A and B such that A,B ⊆ E, we define the
operators f(A) = AR and h(B) = BQ as follows:

f(A) = AR = {d | ∀g, g ∈ A ⇒ (g, d) ∈ R} (4)

h(B) = BQ = {g | ∀d, d ∈ B ⇒ (g, d) ∈ R} (5)

The operators R and Q define a galois connection[10] between the ordered sets (A,≪) and (B,≪) by satisfying
the following conditions:

Ai ⊆ Aj ⇒ AR
i ⊇ AR

j (6)

Bi ⊆ Bj ⇒ BQ
i ⊇ BQ

j (7)

Ai ⊆ ARQ
i and Bi ⊆ BQR

i (8)

Proposition 1. A pair (f, h) or (R,Q ) of maps is called a galois connection if and only if

A ⊆ BQ ⇔ B ⊆ AR (9)

Proposition 2. For every galois connection (f, h) or (R,Q )

f = fgf and g = gfg (10)

3.2 Sub-lattice of maximal rectangles

The set of maximal rectangles of a binary relation R, using the galois connection operators R and Q can be
organized under a complete sub-lattice[5].

Definition 4. Let R be a binary relation defined on a set E and Trmax the set of maximal rectangles of R
ordered by the relation ≪max. Hence, (Trmax,≪max) is a complete sub-lattice where the supremum Pmax and
the infinimum Hmax of any set of maximal rectangles of Trmax are given respectively as follows:

Pmax
j∈J (Aj , Bj) = (∪j∈JAj ,∩j∈JBj) (11)

Hmax
j∈J (Aj , Bj) = (∩j∈JAj ,∪j∈JBj) (12)

4 Fuzzy Galois lattice

In this section, we start by introducing the notions of fuzzy rectangle and fuzzy maximal rectangle and we
prove some formal properties; we also define a fuzzy galois connection by proving some of its conditions. Then
we propose to organize the set of fuzzy rectangles under a complete and distributive lattice.

Definition 5. Let R̃ be a fuzzy binary relation defined from E to F̃ . A fuzzy rectangle of R̃ is a couple of
two sets (A, B̃) such that A× B̃ ⊆ R̃. i.e., µA×B̃(x, y) ≤ µR̃(x, y), where x ∈ E and y ∈ F̃ .

Definition 6. Let R̃ be a fuzzy binary relation defined from E to F̃ . The relation A × B̃, such that A ⊆ E
and B̃ ⊆ F̃ is called fuzzy rectangular relation associated with the rectangle (A, B̃) of R̃. A is the domain of

this relation and B̃ is its range.

Remark 1. The correspondence between the fuzzy rectangles (Ai, B̃i) and the associated fuzzy rectangular

relations (Ai × B̃i) is a bijective one, except when Ai = ∅ or B̃i = ∅. For instance, the fuzzy rectangles

(∅, B̃1) and (A1, ∅) are both associated with the null rectangular relation ∅. This is the main reason for which
we have made the distinction between fuzzy rectangles and fuzzy rectangular relations in the sense that the
concept of a fuzzy rectangle allows us to obtain a lattice structure.

Definition 7. A fuzzy maximal rectangle, or fuzzy concept is defined as the cartesian product A × B̃ ⊆ R̃,
where A is a crisp set and B̃ is a fuzzy one, whenever A× B̃ ⊆ A′ × B̃′ ⊆ R, then A = A′ and B = B̃′.



Proposition 3. Let {Aj , Bj} (with j ∈ J) be a set of fuzzy rectangular relations of a fuzzy binary relation R̃.

The relation (∪j∈JAj)× (∩j∈J B̃j) is a rectangular relation of R̃. Therefore (∪j∈JAj ,∩j∈J B̃j) is a rectangle

of R̃.

Proof. We have to prove that ∀(a, b) ∈ (∪j∈JAj)× (∩j∈J B̃j) ⇒ (a, b) ∈ R̃

∀(a, b) ∈ (∪j∈JAj)× (∩j∈J B̃j) ⇒ a ∈ ∪j∈JAj ⇒ ∃k ∈ J | a ∈ Ak (13)

∀(a, b) ∈ (∪j∈JAj)× (∩j∈J B̃j) ⇒ µ∩j∈J B̃j
(b) = min

j∈J
(µB̃j

(b))

Hence, and particularly for k we have

µ∩j∈J B̃j
(b) ≤ µB̃k

(b) (14)

(13) and (14) ⇒µ(∪j∈JAj)×(∩j∈J B̃j)
(a, b) ≤ µ(Ak,Bk)(a, b) ≤ µR̃(a, b)

Since (Ak, B̃k) is a fuzzy rectangle of R̃ ⇒ (∪j∈JAj)× (∩j∈J B̃j) is a fuzzy rectangle of R̃.

Proposition 4. Let {Aj , B̃j} (with j ∈ J) be a set of fuzzy rectangular relations of a fuzzy binary relation

R̃. The relation (∩j∈JAj)× (∪j∈J B̃j) is a rectangular relation of R̃. Therefore (∩j∈JAj ,∪j∈J B̃j) is a fuzzy

rectangle of R̃.

Proof. Conversely follows from the proof of the previous proposition.

Proposition 5. The following relation ≪̃ defined on R̃ is a partial order relation: (A1, B̃1) ≪̃ (A2, B̃2) ⇔
A1 ⊆ A2 and B̃2 ⊆ B̃1, where (A1, B̃1), (A2, B̃2) ∈ R̃.

Proof. According to the definition of a partial order relation, we have to prove that ≪̃ is reflexive, antisym-
metrical and transitive.

– Reflexivity

∀A1 ⊆ E, B̃1 ⊆ F̃ we have A1 ⊆ A1 and B̃1 ⊆ B̃1 (by reflexivity of ⊆). Hence, (A1, B̃1) ≪̃ (A1, B̃1).

– Antisymmetry

(A1, B̃1) ≪̃ (A2, B̃2) and (A2, B̃2) ≪̃ (A1, B̃1)

⇔ A1 ⊆ A2 and B̃2 ⊆ B̃1 and A2 ⊆ A1 and B̃1 ⊆ B̃2

⇒ A1 = A2 and B̃1 = B̃2

⇒ (A1, B̃1) = (A2, B̃2).

– Transitivity

(A1, B̃1) ≪̃ (A2, B̃2) and (A2, B̃2) ≪̃ (A3, B̃3).

⇔ A1 ⊆ A2 and B̃2 ⊆ B̃1 and A2 ⊆ A3 and B̃3 ⊆ B̃2

⇒ A1 ⊆ A3 and B̃3 ⊆ B̃1

⇔ (A1, B̃1) ≪ (A3, B̃3).

Theorem 1. Let R̃ be a fuzzy binary relation defined from E to F̃ and Tr the set of fuzzy rectangles of R̃
ordered by the relation ≪̃. (Tr, ≪̃) is a complete and distributive lattice with a smallest element (∅, F̃ ) and a
biggest one (E, ∅), and where:

Pj∈J(Aj , B̃j) = (∪j∈JAj ,∩j∈J B̃j) (15)

Hj∈J(Aj , B̃j) = (∩j∈JAj ,∪j∈J B̃j) (16)

Proof. First, let us show that any set of fuzzy rectangles of R̃ has a smallest superior boundary and a biggest
inferior one which are both fuzzy rectangles of R̃. Then, we show that P is distributive relatively to H and
conversely.



– Smallest Superior Boundary

∀j ∈ J, (Aj , B̃j) ≪̃ (C, D̃)

⇔ ∀j ∈ J, (Aj ⊆ C) and (D̃ ⊆ B̃j)

⇔ ∪j∈JAj ⊆ C and D̃ ⊆ ∩j∈J B̃j

⇔ (∪j∈JAj ,∩j∈J B̃j) ≪̃ (C, D̃)

The rectangle (∪j∈JAj ,∩j∈J B̃j) is a fuzzy rectangle of Tr.

Infact, according to proposition 3, Pj∈J(Aj , B̃j) = (∪j∈JAj ,∩j∈J B̃j), is the smallest superior boundary.

– Biggest Inferior Boundary

We have to prove that any set of fuzzy rectangles of Tr has a biggest inferior boundary.
Let (Aj , B̃j) be a fuzzy rectangle of Tr :

∀j ∈ J, (C, D̃) ≪̃ (Aj , B̃j)

⇔ ∀j ∈ J, (C ⊆ Aj) and (B̃j ⊆ D̃)

⇔ C ⊆ ∩j∈JAj and ∪j∈J B̃j ⊆ D̃

⇔ (C, D̃) ≪̃ (∩j∈JAj ,∪j∈J B̃j)

– The rectangle (∩j∈JAj ,∪j∈J B̃j) is a fuzzy rectangle of Tr.

Infact, according to proposition 4, Hj∈J(Aj , B̃j) = (∩j∈JAj ,∪j∈J B̃j), is the biggest inferior boundary.

– By noting that Pj∈{1,2}(Aj , B̃j) = (A1 ∪ A2, B̃1 ∩ B̃2) and that Hj∈{1,2}(Aj , B̃j) = (A1 ∩ A2, B̃1 ∪ B̃2)
we could easily show that P is distributive relatively to H and conversely by using the correspondent
properties and the duality of the operators ∪ and ∩.

– According to the definition of ≪̃, we could easily show that (∅, F̃ ) is the smallest element of (Tr, ≪̃) and
that (E, ∅) is the biggest one.

4.1 Galois Connection in Fuzzy Binary Relations

Let R̃ be a fuzzy binary relation defined from E to F̃ . For two sets A and B̃ such that A ⊆ E and B̃ ⊆ F̃ we

define the operators f̃(A) = AR̃ and h̃(B̃) = BQ̃ as follows:

f̃(A) = AR̃ = {d/α | ∀g, g ∈ A, α = minµR̃(g, d)} (17)

h̃(B̃) = B̃Q̃ = {g | ∀d, d ∈ B̃,⇒ µR̃(g, d) ≥ µB̃(d)} (18)

Proposition 6. The operators R̃ and Q̃ form a fuzzy galois connection on the ordered sets (A, ≪̃) and (B, ≪̃)
by satisfying the following conditions:

Ai ⊆ Aj ⇒ AR̃
i ⊇ AR̃

j (19)

B̃i ⊆ B̃j ⇒ B̃Q̃
i ⊇ B̃Q̃

j (20)

A ⊆ AR̃Q̃ and B̃ ⊆ B̃Q̃R̃ (21)

Proof. Let A,Ai, Aj ∈ E and B̃, B̃i, B̃j ∈ F̃ .

– Then

AR̃
i = {d/αi | ∀g, g ∈ Ai, αi = minµR̃(g, d)}

AR̃
j = {d/αj | ∀g, g ∈ Aj , αj = minµR̃(g, d)}

If Ai ⊆ Aj ⇒ αi ≥ αj . Hence AR̃
i ⊇ AR̃

j This proves (19).



– For (20), if B̃i ⊆ B̃j ⇒ ∀d ∈ B̃i, µB̃j
(d) ≥ µB̃i

(d). Then

B̃Q̃
i = {gi | ∀d, d ∈ B̃i,⇒ µR̃(gi, d) ≥ µB̃i

(d)}

B̃Q̃
j = {gj | ∀d, d ∈ B̃j ,⇒ µR̃(gj , d) ≥ µB̃j

(d)}

If gj ∈ BQ̃
j ⇒ µR̃(gj , d) ≥ µB̃j

(d) ≥ µB̃i
(d) ⇒ gj ∈ BQ̃

i . Hence BQ̃
i ⊇ BQ̃

j . This proves (20).

– For (21)

AR̃ = {d/α | ∀g, g ∈ A, α = minµR̃(g, d)}

AR̃Q̃ = {g | ∀d, d ∈ AR̃,⇒ µR̃(g, d) ≥ minµR̃(g, d)}

Obviously, if g ∈ A ⇒ g ∈ AR̃Q̃ ⇒ A ⊆ AR̃Q̃. This proves the first part of (21).

– Similarly, let d ∈ B̃ with µB̃(d). Then

B̃Q̃ = {g | ∀d, d ∈ B̃,⇒ µR̃(g, d) ≥ µB̃(d)}

B̃Q̃R̃ = {d/α | ∀g, g ∈ B̃R̃, α = minµR̃(g, d)}

⇒ α ≥ µB̃(d) ⇒ B̃ ⊆ B̃Q̃R̃. This proves the other part of (21).

Proposition 7. A pair (R̃,Q̃ ) of maps is a fuzzy galois connection if and only if A ⊆ B̃R̃ ⇔ B̃ ⊆ AQ̃.

Proof. A ⊆ B̃R̃ by (19) ⇒ AQ̃ ⊇ B̃Q̃R̃ and by (21) ⇒ AQ̃ ⊇ B̃.

This proves that A ⊆ B̃R̃ ⇒ B̃ ⊆ AQ̃ The other direction follows symmetrically.

Proposition 8. For a fuzzy galois connection (R̃,Q̃ ), AR̃ = AR̃Q̃R̃ and B̃Q̃ = BQ̃R̃Q̃.

Proof. With B̃ = AR̃ by (21)

⇒ AR̃ ⊆ AR̃Q̃R̃ (22)

and from A ⊆ AR̃Q̃ by (19)

⇒ AR̃ ⊇ AR̃Q̃R̃ (23)

(22) and (23) ⇒ AR̃ = AR̃Q̃R̃. The other part can be proved similarly.

4.2 Fuzzy Galois sub-Lattice of fuzzy maximal rectangles

We can remark that A× AR̃ is the biggest relation of the form A×X ⊆ R̃ and that BQ̃ × B is the biggest

relation of the form X × B ⊆ R̃. In other words, R̃ computes the maximal range for a domain A and Q̃

computes the maximal domain for a range B̃.
Similarly to the classical case, we propose to organize the set of fuzzy maximal rectangles under a complete

sub-lattice.

Theorem 2. Let R̃ be a fuzzy binary relation defined from E to F̃ and Trmax be the set of fuzzy maximal
rectangles of R̃ ordered by the relation ≪̃max

. (Trmax, ≪̃
max

) is a complete sub-lattice where the supremum
(Pmax) and the infinimum (Hmax) of any set of maximal rectangles of Trmax are given respectively by :

Pmax
j∈J (Aj , B̃j) = ((∪j∈JAj)

R̃Q̃,∩j∈J B̃j) (24)

Hmax
j∈J (Aj , B̃j) = (∩j∈JAj , (∪j∈J B̃j)

Q̃R̃) (25)

Proof. This theorem can be proved in a similar manner as theorem 1.



Example 4. Let us consider the fuzzy binary relation R̃ given in the following table:

p1 p2 p3 p4 Class
o1 0.5 1 0.7 0.5 C1
o2 0.6 0.7 1 0.5 C2
o3 1 0.9 1 0.1 C3
o4 1 0.9 0.9 0.1 C3

Table 1: The fuzzy binary relation R̃

The fuzzy concepts in R̃ are given below labelled FC0 to FC9.

Label Fuzzy Concept
FC0 ∅ × {p1/1.0, p2/1.0, p3/1.0, p4/0.5}
FC1 {o1} × {p1/0.5, p2/1.0, p3/0.7, p4/0.5}
FC2 {o2} × {p1/0.6, p2/0.7, p3/1.0, p4/0.5}
FC3 {o3} × {p1/1.0, p2/0.9, p3/1.0, p4/0.1}
FC4 {o1, o2} × {p1/0.5, p2/0.7, p3/0.7, p4/0.5}
FC5 {o2, o3} × {p1/0.6, p2/0.7, p3/1.0, p4/0.1}
FC6 {o3, o4} × {p1/1.0, p2/0.9, p3/0.9, p4/0.1}
FC7 {o1, o3, o4} × {p1/0.5, p2/0.9, p3/0.7, p4/0.1}
FC8 {o2, o3, o4} × {p1/0.6, p2/0.7, p3/0.9, p4/0.1}
FC9 {o1, o2, o3, o4} × {p1/0.5, p2/0.7, p3/0.7, p4/0.1}

Table 2: The fuzzy concepts in R̃

FC0

FC1 FC2

FC3

FC4

FC5FC6

FC7 FC8

FC9
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Figure 1: Fuzzy galois sub-lattice of R̃



5 Applications

5.1 Fuzzy maximal rectangles and Decision making

The rectangular relation (or rectangle) of a crisp binary relation was widely used in many fields specially in
learning and decision making[8, 9]. For instance, in the I.P.R[8] method, the rectangular decomposition[2] is
applied to a binary relation in order to generate a set of optimal rectangles and each one of them generates a
decision rule. Similarly to the crisp case, the fuzzy rectangle can be used in a decision making problem. Let
R̃ be a fuzzy relation defined from E to F̃ , R̃ can be viewed as a set of objects (i.e., each row represents one
object) and each object is described by a set of properties and a class label. Table 1 illustrates such a relation.
Let ox be a novel object for which we try to decide its eventual class given all the relation’s objects. So, ox
can be approximated by the fuzzy concept or the maximal rectangle containing it, and from this concept we
can decide the class of ox.

Example 5. Let ox = {p1/1, p2/0.9, p3/0.9, p4/0.1}. The concept corresponding to ox is represented in table
2 and the chosen class is C3.

p1 p2 p3 p4 Class
o3 1 0.9 1 0.1 C3
o4 1 0.9 0.9 0.1 C3

Table 3: The concept approximating ox

5.2 Discovery of fuzzy association rules

Knowledge discovery, or Data mining, is the discovery of previously unknown, potentially useful and hidden
knowledge in databases. During the past years, boolean association rules mining has received considerable
attention. These associations describe dependencies among items in large databases. In this context, many
efficient algorithms have been proposed in the literature. The most noticeable are Apriori, Manilla’s algorithm,
Partition and DIC. All these algorithms are based on the Apriori mining method [3]

Fuzzy Maximal Rectangles can be used to generate association rules among objects. Hidden and poten-
tially useful information can be discovered among objects.

Example 6. Let us consider the fuzzy binary relation given in table 1. Suppose that the user is interested in
discovering the rules, with a support at least equal to 2, where the property p1 appears in the consequence.
In the fuzzy sub-lattice, we look for the smallest fuzzy maximal rectangle containing p1, which is {o3, o4} ×
{p1/1.0, p2/0.9, p3/0.9, p4/0.1}. Hence, the associated fuzzy rule is:

If p2(0.9), p3(0.9), p4(0.1) then p1(1).

6 Conclusion

In this paper, we have proposed a fuzzy galois connection for fuzzy relations which satisfies all the conditions
defined for fuzzy galois connections. We also proved that, similarly to the classical case, the set of fuzzy
(maximal) rectangles can be organized under a complete and distributive lattice (complete sub-lattice). We
believe that the introduced formal properties can be successfully applied to some practical fields of computer
science, such as, Knowledge extraction (fuzzy association rules), Information retrieval and fuzzy reasoning,
and Vertical and horizontal additional information, and so on.

Acknowledgment: We thank King Fahd University of Petroleum and Minerals and the General Direction of
Scientific Research of Tunisia (DGRST) for partially financing this work.
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