
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 9.2: Remoting (Part 2)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn about types of Remote Objects
– Server Activated Objects (SAO)
– Client Activated Objects (CAO)Client Activated Objects (CAO)

Learn about the life-time of remote objects
Learn how to create event-generating remote
objects.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 2

2

Server -Activated Objects (SAO)
A remote object is said to be Server-Activated (SAO), if
when a client creates an instance of the remotable class, the
instance is not created on the server until a method is called.
Both SingleCall and Singleton modes of creating objects
are SAO.
When the client creates a Proxy object, the real object is not
created on the server side until a method is called.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 3

Client-Activated Objects (CAO)
In client-activated, an object is created on the server side
the moment the client uses new to create the proxy object.
Client-activated object provides two advantages:
– It can be used to call a non-default constructor of the remote class.

This is not possible in server-activated modes.
– It provides another type of life-time, different from those of SingleCall

and Singleton. A separate object is created for each client and the
state of the object is maintained across multiple calls.

Use Client-Activated if object state needs to be maintained
separately for each client

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 4

separately for each client.

3

Client-Activated Objects (CAO) …
An example application best implemented using CAO is a
remote Stop-Watch service.
The state needs to be maintained (from start time to stop
time) and each client needs its own instance.

1. using System;

2. public class StopWatch : MarshalByRefObject {
3. DateTime start = DateTime.Now;

4. public void Start () {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 5

p
5. start = DateTime.Now;
6. }
7. public int Stop () {
8. return (int)((DateTime.Now - start).TotalMilliseconds);
9. }
10. }

Client-Activated Objects (CAO) …
Client and Server configurations for CAO are different from
those of SAO.

//StopWatchServer.config
<configuration>

<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="8080" />

</channels>
<service>

<activated type="StopWatch, StopWatchLibrary"/>

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 6

<activated type StopWatch, StopWatchLibrary />
</service>

</application>
</system.runtime.remoting>

</configuration>
• Activated service is used instead of

wellknown
• No need for URI and Mode paras.
• Formatters are declared on the

client side

4

Client-Activated Objects (CAO) …
1. using System;
2. using System.Runtime.Remoting;

3. class StopWatchClient {
4. static void Main () {
5. RemotingConfiguration.Configure(
6. "StopWatchClient.config");
7. StopWatch sw = new StopWatch ();
8. sw.Start ();

9. Console.WriteLine(
10 "Press Enter to show elapsed time ");

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 7

10. Press Enter to show elapsed time …);
11. Console.ReadLine ();
12. Console.WriteLine (sw.Stop () + " millseconds");
13. Console.ReadLine();
14. }
15. }

Client-Activated Objects (CAO) …
//StopWatchClient.config

<configuration>
<system.runtime.remoting>

<application><application>
<client url="http://localhost:8080">

<activated type="StopWatch, StopWatchLibrary"/>
</client>
<channels>

<channel ref="http" port="0">
<serverProviders>
<formatter ref="soap" typeFilterLevel="Full"/>
<formatter ref="binary" typeFilterLevel="Full"/>

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 8

</serverProviders>
</channel>

</channels>
</application>

</system.runtime.remoting>
</configuration>

5

Life-Time of Remote Objects
Life-time of a remote object depends on its activation mode:
– For SingleCall objects, it is the duration of the method call
– For Singleton and Client-Activated objects, it is controlled by a lease.

A lease is an object that implements the ILease interface of
the System.Runtime.Remoting.Lifetime namespace.
The ILease interface has the following properties:

TimeSpan InitialLeaseTime Length of time following activation
that the object lives if it receives no
method calls

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 9

TimeSpan RenewOnCallTime Minimum value that the
CurrentLeaseTime is set to each time
the object receives a call

TimeSpan CurrentLeaseTime Amount of time remaining before the
object is deactivated if it does not
receive a method call

Life-Time of Remote Objects …

LeaseState CurrentState Gets the current LeaseState of the lease.
LeaseState is an enumeration with values:
Active, Expired, Initial, Null, Renewing

The default for InitialLeaseTime is 5 minutes, and the default
for RenewOnCallTime is 2 minutes.
– The defaults can be changed by overriding InitializeLifetimeService

method of the base MarshalByRefObject class.
1. public class RemotableClass : MarshalByRefObject {
2. public override object InitializeLifetimeService () {
3. ILease lease = (ILease) base.InitializeLifetimeService ();
4 if (lease CurrentState == LeaseState Initial) {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 10

4. if (lease.CurrentState == LeaseState.Initial) {
5. lease.InitialLeaseTime = TimeSpan.FromMinutes (20);
6. lease.RenewOnCallTime = TimeSpan.FromMinutes (10);
7. }
8. return lease;
9. }
10. // ...
11. }

6

Life-Time of Remote Objects …

To make an object to remain active forever, override the
InitializeLifeTimeServices method to return null:

1. public class RemotableClass : MarshalByRefObject {
2. public override object InitializeLifetimeService () {
3. return null;
4. }
5. // ...
6. }

The default times can also be changed declaratively:
<configuration>
< t ti ti >

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 11

<system.runtime.remoting>
<application>

<lifetime leaseTime="20M" renewOnCallTime="10M" />
</application>

</system.runtime.remoting>
</configuration>

Other suffixes for the time span are
: D for days, H for hours or S for
seconds - the default.

Event-Generating remote objects
In addition to providing remote methods, remote objects can
also provide remote events.
– A client register for a remote event using its local method.
– When the event occurs, the remote object notifies the

client and the local method get executed.
– In this way, it is easy to create a broadcasting system

using remoting.
– All clients register for the event with the remote object.

Each time the event occurs, all registered clients are

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 12

Each time the event occurs, all registered clients are
notified.

7

Event-Generating remote objects …
To create remotable class that can generate events, the
following additional settings are required:
– The .exe of the client must be copied on the server side.

Remote object needs this to bind its event with the method
that the client used to register for the event.

– To make the system efficient, the method that is invoked by
the remote object to notify its clients when the event occurs
should be tagged with the [OneWay] attribute.

– [OneWay] is a shorthand for OneWayAttribute, which is in

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 13

[y] y
the System.Runtime.Remoting.Messaging namespace.

– Calls to methods tagged as OnWay runs asynchronously.
Also the caller will not be notified of the result of the call.

– Such methods are called fire-and-forget.

Event-Generating remote objects …
1. using System;
2. using System.Runtime.Remoting;
3. using System.Runtime.Remoting.Messaging;

4. public delegate void MessageHandler(string msg);

5. public class ChatClass : MarshalByRefObject {
6. public event MessageHandler MessageSender;
7.
8. public override object InitializeLifetimeService () {
9. return null;
10. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 14

11. [OneWay]
12. public void SendMessage(string msg) {
13. if (MessageSender != null)
14. MessageSender(msg);
15. }
16. }

8

Event-Generating remote objects …

1. using System;
2. using System.Windows.Forms;
3. using System.Runtime.Remoting;
4 using System ComponentModel;4. using System.ComponentModel;

5. public class ChatClient : System.Windows.Forms.Form
6. {
7. private System.Windows.Forms.TextBox inBox;
8. private System.Windows.Forms.Button sendBt;
9. private System.Windows.Forms.GroupBox groupBox;
10. private System.Windows.Forms.GroupBox groupBox2;
11 private System Windows Forms TextBox outBox;

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 15

11. private System.Windows.Forms.TextBox outBox;
12.
13. private MessageHandler handler;
14. private ChatClass chatObject;

Event-Generating remote objects …
15. public ChatClient() {
16. InitializeComponent();
17. try {
18. RemotingConfiguration.Configure ("ChatClient.config");
19. chatObject = new ChatClass();
20. handler = new MessageHandler(OnNewMessage);
21. chatObject.MessageSender += handler;
22. }
23. catch (Exception ex) {
24. MessageBox.Show (ex.Message);
25. Close ();
26. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 16

27. }
28. void InitializeComponent() {
29. //deleted
30. }
31. public static void Main(string[] args) {
32. Application.Run(new ChatClient());
33. }

9

Event-Generating remote objects …

34. public void OnSendClicked(object sender, System.EventArgs e)
35. {
36. chatObject.SendMessage(outBox.Text);
37. }
38.
39. public void OnNewMessage(string msg) {
40. inBox.Text += msg + "";
41. }

42. protected override void OnClosing (CancelEventArgs e)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 17

43. {
44. // Disconnect event handler before closing
45. base.OnClosing (e);
46. chatObject.MessageSender -= handler;
47. }
48. }

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– Richard Blum, C# Network Programming. Sybex 2002.

Lecture notes of previous offerings of SWE344 and ICS343
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 18

