
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 9.1: Remoting (Part 1)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn the basics of remoting
Learn the .NET remoting architecture
Learn the components of a remoting application andLearn the components of a remoting application and
how to write each of them.
Learn how to configure remoting server and
remoting client declaratively.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 2

2

What is Remoting?
Remoting is a distributed system in which an application
communicates with another application running in a different
application domain by invoking its methods.
– The two application domains can be on the same computer or on

different computers attached to the same of different networks.

Remoting provides another way of writing C/S applications
where, instead of exchanging messages, a client gets a
service by directly calling a remote method.
This approach allows C/S applications to be written at a
hi h l l h lik iti t d l li ti

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 3

higher level, very much like writing stand-alone application,
relieving the programmer from:
– The need to create and abide by message exchange protocols
– The need to convert data back-and-forth from binary to its real type.

.NET Remoting Architecture
Methods that will be called from the client are implemented in a
remotable class.
Instance(s) of the remotable class (the remote objects) are hosted
by a remoting serverby a remoting server.
When a client creates an instance of the remotable class, the
.NET system creates a proxy object on the client side.
– The proxy object acts like the real object to the client with the same public

methods.
– When the client calls a method of the proxy object, the proxy object calls the

corresponding method of the remote object

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 4

3

.NET Remoting Architecture …
Communication between the client (through the proxy object)
and the remote object takes place through a Communication
Channel.
All objects exchanged between the client and the remote
object are automatically serialized and Deserialized by the
system using formatter classes.
– Objects exchanged are parameters passed as arguments (by the

client) to remote methods or values returned by the remote methods.
– Serialization is the process of converting an object into a stream so

that it can be saved on disk or transmitted over the network The

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 5

that it can be saved on disk or transmitted over the network. The
process of recovering the object from stream is called Deserialization.

Formatters and Channels
.NET provides two formatter classes that automatically
serialize objects exchanged in a remoting applications:

• System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
• System.Runtime.Serialization.Formatters.Soap.SoapFormatterSystem.Runtime.Serialization.Formatters.Soap.SoapFormatter

– BinaryFormatter serializes an object into a stream of bytes.
– SoapFormatter serializes an object into XLM using the Simple Object

Access Protocol (SOAP) - the standard for exhanging XML data.
– BinaryFormatter is more compact and therefore more efficient.

.NET also provides two types of communication channels:
• System.Runtime.Remoting.Channels.Tcp.TcpChannel
• System.Runtime.Remoting.Channels.Http.HttpChannel.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 6

System.Runtime.Remoting.Channels.Http.HttpChannel.
– TcpChanned is the default for exchanging objects serialized using

BinaryFormatter. It may be restricted to LAN by firewalls.
– HttpChannel is used to exchange messages over the internet and is

the default for exchanging data formatted using SoapFormatter.
– The best approach is to use BinaryFormatter over HttpChannel

4

Writing a Serializable class
All standard data type classes (Int32, Double, String, etc.)
are serializable and thus, can be used in a remotable class.
However, user-defined classes must be declared as
serializable by adding the Serializable attribute at the top:

1. using System;

2. [Serializable]
3. public class Person {
4. private int age;
5. private string name;
6. public Person(int age, string name) {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 7

p g g
7. this.age = age;
8. this.name = name;
9. }
10. public override string ToString() {
11. return "Name: " + name + ", Age: " + age;
12. }
13. }

Writing a Serializable class …
1. using System;
2. using System.IO;
3. using System.Runtime.Serialization.Formatters.Binary;
4. public class SerialTest {
5. public static void Serialize() {
6. Person p = new Person(25, "Amir");
7. FileStream fs = new FileStream("temp.dat", FileMode.Create);
8. BinaryFormatter formatter=new BinaryFormatter();
9. formatter.Serialize(fs,p); fs.Close();
10. }
11. public static void DeSerialize() {
12. FileStream fs= new FileStream("temp.dat", FileMode.Open);
13. BinaryFormatter formatter=new BinaryFormatter();
14. Person recoveredPerson =(Person) formatter.Deserialize(fs);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 8

15. Console.WriteLine(recoveredPerson); fs.Close();
16. }
17. public static void Main(string[] s) {
18. Serialize();
19. DeSerialize();
20. }
21. }

5

Writing a Remoting Application
Writing a remoting application involves writing the following
elements:
– A remotable class
– A remoting server
– A remoting client

Remotable class
This is a class whose methods can be accessed remotely
from another application domain.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 9

pp
To construct a remotable class, all that is needed is to extend
the System.MarshalByRefObject class.

Writing a Remoting Application …
1. using System;
2. public class MathClass:MarshalByRefObject {
3. public double Add(double a, double b) {
4. return a + b;
5. }
6. public double Subtract(double a, double b) {
7. return a - b;
8. }
9. public double Multiply(double a, double b) {
10. return a * b;
11. }
12 public double Divide(double a double b) {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 10

12. public double Divide(double a, double b) {
13. if (b == 0)
14. return 0;
15. else
16. return a/b;
17. }
18. }

This class needs to
be compiled into a

a DLL

6

Writing a Remoting Application …
Remoting Server

This is an application that hosts the remote object.
– A client connects to a server in order to gain access to the methods of the

remote object.remote object.
Writing a Remoting server involves three steps:

1. Create a TCP or HTTP communication channel using either TcpChannel
or HttpChannel respectively.

HttpChannel channel = new HttpChannel(9095);

2. Register the communication channel with the remoting channel services.
This is done using the static method, RegisterChannel, of the,
System.Runtime.Remoting.Channels.ChannelServices class

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 11

System.Runtime.Remoting.Channels.ChannelServices class.
ChannelServices.RegisterChannel(channel);

3. Register the remotable class with the remoting server. This is done
using the static method, RegisterWellKnownServiceType, of the
System.Runtime.Remoting.RemotingConfiguration class.

Writing a Remoting Application …
The RegisterWellKnownServiceType method takes three
arguments:
– The type of the remotable class

A URI id tifi f th l d– A URI identifier for the class, and
– Object creation mode.

• Possible modes are: SingleCall and Singleton, both
of which are fields of the WellKnownObjectMode
class.

• SingleCall means a separate instance of the
remotable class will be created for each method call to

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 12

remotable class will be created for each method call to
the remotable class - useful if you do not need to
maintain object state across method calls.

• Singleton mode means, a single instance will be used
for different calls for all clients. Singleton is useful if
you wish to retain the state across different calls.

7

Writing a Remoting Application …
1. using System;
2. using System.Runtime.Remoting;
3. using System.Runtime.Remoting.Channels;
4. using System.Runtime.Remoting.Channels.Http;

5. public class MathServer {
6. public static void Main() {
7. HttpChannel channel = new HttpChannel(9095);
8. ChannelServices.RegisterChannel(channel);
9. RemotingConfiguration.RegisterWellKnownServiceType(
10. typeof(MathClass), //type of Remotable class
11 "MyMathServer" //user-defined object URI

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 13

11. MyMathServer , //user defined object URI
12. WellKnownObjectMode.SingleCall); //Mode
13. Console.WriteLine("Press <enter> to exit...");
14. Console.ReadLine();
15. }
16. }

The MathClass.dll should be
stored in the same folder as
the MathServer.exe

Writing a Remoting Application …
Remoting Client

This is the application that accesses the methods of the
remotable class through the remoting server.
Writing a remoting client involves three steps:

1. Create a Channel using either TcpChannel or HttpChannel
– The channel must be of same type as that of the remoting server.

2. Register the channel with the remoting channel services.
3. Creating an instance of the proxy class.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 14

8

Writing a Remoting Application …
The Proxy object can be created using the method,
RegisterWellKnownClientType of the RemotingConfiguration
class.
– The method takes the type of the remote object and its URI as

argumentsarguments.
Example:

RemotingConfiguration.RegisterWellKnownClientType(
typeof(MathClass), //type of Remotable object
"http://localhost:9095/MyMathServer"); //URI

MathClass math = new MathClass();

Alternatively, the getObject method of the System.Activator

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 15

y, g j y
class is used.
Example:

MathClass math = (MathClass)Activator.GetObject(
typeof(MathClass),
"http://localhost:9095/MyMathServer");

Writing a Remoting Application …
Whatever method is used in creating the proxy object, the
type the of remote object must exist on the client side.
– Cannot declare a reference variable without a type!

Two options are possible:
1. Provide the assembly containing the remotable class to the

client.
– Question: Why then do we need the remotable object if we have its

class locally at the client side?
– Answer: The remote object usually provides some service that a

local instance cannot provide

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 16

local instance cannot provide.

2. Provide an interface containing the methods of the
remotable class to the client.
– The remotable class must be designed to implement the interface.

9

Writing a Remoting Application …
1. using System;
2. using System.Runtime.Remoting;
3. using System.Runtime.Remoting.Channels;
4. using System.Runtime.Remoting.Channels.Http;
5. public class MathClient {p {
6. public static void Main(string[] args) {
7. HttpChannel channel = new HttpChannel();
8. ChannelServices.RegisterChannel(channel);
9. RemotingConfiguration.RegisterWellKnownClientType (
10. typeof (MathClass), "http://localhost:9095/MyMathServer");
11. MathClass math = new MathClass();
12. if (math == null)
13. Console.WriteLine("Could not locate Server");
14. else {

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 17

15. int a = 10, b = 5;
16. Console.WriteLine("{0} + {1} = {2}", a, b, math.Add(a, b));
17. Console.WriteLine("{0} - {1} = {2}", a, b, math.Subtract(a, b));
18. Console.WriteLine("{0} * {1} = {2}", a, b, math.Multiply(a, b));
19. Console.WriteLine("{0} / {1} = {2}", a, b, math.Divide(a, b));
20. }
21. }
22. }

Declarative Configuration
The last example shows the programmatic configuration
of the remoting server and the remoting client.
– The configuration information is specified inside the source code.
– The disadvantage of programmatic configuration is that if the server

is moved to another machine, then the source code must be
modified and recompiled.

An alternative approach involves specifying the configuration
information using XML tags in a text file.
– The server and the clients are then written so that they read the

information from the text files.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 18

– If there is any change in the information, the text files can be easily
modified accordingly.

– This type of configuration is called declarative configuration.

10

Declarative Configuration …
//File: MathServer.config

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="9090">
<serverProviders>

<provider ref="wsdl" />
<formatter ref="soap" typeFilterLevel="Full" />
<formatter ref="binary" typeFilterLevel="Full" />
</serverProviders>
</channel>

</channels>

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 19

<service>
<wellknown mode="Singleton" type="MathClass, MathLibrary"

objectUri="MyMathServer" />
</service>
</application>

</system.runtime.remoting>
</configuration>

Declarative Configuration …
Notes:

If MathClass is in a namespace, Math, then you must include
it in the type specification as:

type="Math.MathClass, MathLibrary"
– This is important since Visual studio automatically encloses classes

in a namespace.

In the example, both soap and binary formatters are
specified to be used over a http channel.
The configuration is fairly general. All that is needed to

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 20

g y g
adapt it to another application is to modify the service part to
reflect the remotable class and possibly change the port
number.

11

Declarative Configuration …

1. using System;
2 i S t R ti R ti

With the configuration file, the MathServer program reduces
to few lines as shown below:

2. using System.Runtime.Remoting;

3. public class MathServer
4. {
5. public static void Main() {
6. RemotingConfiguration.Configure("MathServer2.config");
7. Console.WriteLine(
8. "Server started, press Enter to terminate...");
9 C l R dLi ()

Only the configuration file needs to be
changed for the server to work with
another remotable object.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 21

9. Console.ReadLine();
10. }
11. }

Note: Since there is no reference to the MathClass in the
code, the DLL file containing the class must be copied
manually to the location of the of the server.

Declarative Configuration …

<configuration>
<system.runtime.remoting>
<application>

//File: MathClient2.config

<application>
<channels>
<channel ref="http" port="0">
<clientProviders>
<formatter ref="binary" />
</clientProviders>
</channel>
</channels>
<client>

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 22

<wellknown type="MathClass, MathLibrary"
url="http://localhost:9090/MyMathServer" />

</client>
</application>
</system.runtime.remoting>
</configuration>

12

Declarative Configuration …
1. using System;
2. using System.Runtime.Remoting;
3. public class MathClient {
4. public static void Main(string[] args)
5 {5. {
6. RemotingConfiguration.Configure("MathClient2.config");
7. MathClass math = new MathClass();
8.
9. if (math == null)
10. Console.WriteLine("Could not locate Server");
11. else
12. {
13. int a = 10, b = 5;
14 Console WriteLine("{0} + {1} = {2}", a, b, math Add(a, b));

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 23

14. Console.WriteLine({0} + {1} {2} , a, b, math.Add(a, b));
15. Console.WriteLine("{0} - {1} = {2}", a, b, math.Subtract(a, b));
16. Console.WriteLine("{0} * {1} = {2}", a, b, math.Multiply(a, b));
17. Console.WriteLine("{0} / {1} = {2}", a, b, math.Divide(a, b));
18. Console.ReadLine();
19. }
20. }
21. }

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– Richard Blum, C# Network Programming. Sybex 2002.

Lecture notes of previous offerings of SWE344 and ICS343
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

KFUPM: Dr. El-Alfy © 2005 Rev. 2008 24

