
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 5.2: C# TCP C/S Programming (Part 2)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn about the Socket class
Learn how to write a TCP server using the Socket
classclass
Learn how to write a TCP client using the Socket
class
Learn how to Handle Text in Socket applications
Learn about some problems that can occur in TCP

d h t h dl th

2

and how to handle them.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

The Socket Class

The other way to develop C/S applications is using the
Socket class
– Powerful class that gives full control
– Can be used to create C/S applications based on:

• Various addressing schemes (IP, IPv6, etc)
• Various Transport Layer protocols (TCP, UDP, etc.)

– Supports both Synchronous and Asynchronous communications.

The Constructor of the Socket class has the form:

3

public Socket(AddressFamily af, SocketType st, ProtocolType pt)

– Where each parameter type is an enumeration type in the
System.Net.Sockets namespace.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

The Socket Class …
AddressFamily represents the addressing scheme being used for the
communication.

– Some of the values of this enumeration are: InterNetwork, InterNetworkV6,
DataLink, AppleTalk, Ipx, etc.

– InterNetwork represent IPv4 addressing scheme. All our programs in this course will
be centered around this addressing scheme.

SocketType and ProtocolType represents the socket type and transport
layer protocol for the communication respectively.

– The following table shows the possible combinations.

Socket Type Protocol Type Description

4

Socket Type Protocol Type Description
Dgram Udp Connection-less
Stream Tcp Connection-oriented
Raw Icmp Internet Control Message Protocol
Raw Raw Plain IP packets

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

The Socket Class …
Creating a Socket instance:

Socket server = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

S h th d f th S k t l f hi h dSome synchronous methods of the Socket class; some of which are used
by Server sockets while others are for client.

Method Description Used by
void Bind (IPEndPoint ep) binds a server socket to a local End-Point Tcp Server

void Listen (int queueSize) listen for clients; queueSize is the
maximum number of clients to enqueue,

Tcp Server

5

q ,
while waiting for connection

Socket Accept() Accepts client’s request for connection
and returns a reference to its socket

Tcp Server

void Connect (IPEndPoint) Makes a connection request to a server
socket

Tcp Client

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

The Socket Class …
Method Description Used by
int Receive(byte[] data)
int Receive(byte[] data, int size, SocketFlags sf)
int Receive(byte[] data int offset int size

reads bytes from a
socket

Tcp Server
& Client

int Receive(byte[] data, int offset, int size,
SocketFlags sf)
int Send(byte[])
int Send(byte[] data, int size, SocketFlags sf)
int Send(byte[] data, int offset, int size,
SocketFlags sf)

sends bytes to a
socket

Tcp Server
& Client

void ReceiveFrom(byte[], ref EndPoint) receives from a
client at EndPoint

Udp Client

6

client at EndPoint
void SentTo(byte[] ref EndPoint) sends bytes to a

client at EndPoint
Udp Client

void Shutdown(SocketShutdown how) Disables sends/
receives on socket

All

void Close() close a socket All

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

4

The Socket Class …

This figure shows how some of these
methods may be called by a TCP
client-server application.pp

7KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Server Application …

A version of the Echo server using Socket class:
1. using System;
2. using System.Net;
3 i S t N t S k t

Server Side

3. using System.Net.Sockets;
4. using System.Text;
5. class SimpleTcpSocketServer {
6. public static void Main() {
7. Socket server = new Socket(AddressFamily.InterNetwork,
8. SocketType.Stream, ProtocolType.Tcp);
9. IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9050);
10. server.Bind(localEP);
11. server.Listen(10);

8

12.
13. Console.WriteLine("Waiting for Client...");
14. Socket client = server.Accept();
15. IPAddress clientAddress =
16. ((IPEndPoint)client.RemoteEndPoint).Address;
17. Console.WriteLine("Got connection from "+clientAddress);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Programming a Server Application …

16. byte[] data=Encoding.ASCII.GetBytes("Welcome to test server");
17 client Send(data);17. client.Send(data);

18. int size = 0;
19. while(true) {
20. data = new byte[1024];
21. size = client.Receive(data);
22. if (size == 0)
23. break;

9

24. Console.WriteLine(Encoding.ASCII.GetString(data,0, size));
25. client.Send(data, size, SocketFlags.None);
26. }
27. client.Close();
28. server.Close();
29. }
30. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Server Application …
Notes:

The simple version of the Send method assumes that the bytes array
passed to it as argument is full of data.
If some cells in the array are blanks you must use the size argument toIf some cells in the array are blanks, you must use the size argument to
specify the actual size of the data.
Also by default, it assumes that data starts from index zero of the array.
If this in not the case, you must specify an offset value.
In the SimpleTcpSocketServer, two versions of the Send methods were
used.

– First, the simple version was used to send welcome message. This was because the
array returned by the GetBytes method in the preceding line has no empty cells.

10

y y y p g p y
– In the second case, we have to use the version of Send() that takes size because we

are not sure whether the array returned by the preceding call to the Receive method is
full of data or not.

Similar notes applies to the Receive method. You must capture the
actual data size received and use it in processing the data.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

Programming a Client Application …
A version of the Echo client using the Socket class:

1. using System;
2. using System.Net;
3 i S t N t S k t

Client Side

3. using System.Net.Sockets;
4. using System.IO;
5. using System.Text;
6. class SimpleTcpSocketClient {
7. public static void Main() {
8. Socket socket = new Socket(AddressFamily.InterNetwork,
9. SocketType.Stream, ProtocolType.Tcp);
10. IPEndPoint remoteEP = new IPEndPoint(IPAddress.Parse
11. ("127.0.0.1"), 9050);

11

12. try {
13. socket.Connect(remoteEP);
14. }catch (SocketException e) {
15. Console.WriteLine("Unable to connect to server. ");
16. Console.WriteLine(e);
17. return;
18. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Client Application …
17. byte[] data = new byte[1024];
18. int size = socket.Receive(data);
19. Console.WriteLine(Encoding.ASCII.GetString(data, 0, size));
20. String input = null;
21 while (true) {21. while (true) {
22. Console.Write("Enter Message for Server, Enter to Stop: ");
23. input = Console.ReadLine();
24. if (input.Length == 0)
25. break;
26. socket.Send(Encoding.ASCII.GetBytes(input));
27. data = new byte[1024];
28. size = socket.Receive(data);
29. Console.WriteLine("Echo: "+ Encoding.ASCII.GetString(

12

30. data, 0, size));
31. }
32. Console.WriteLine("Disconnecting from Server..");
33. socket.Shutdown(SocketShutdown.Both);
34. socket.Close();
35. }
36. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

Handling Text in Socket Applications
In the Echo Client-Server example, we saw that text data had to be
converted to bytes array before sending using the Send method.
Similarly, the Receive method receives the data as bytes array and it had
to be converted back to text before printingto be converted back to text before printing.
For exchanging text data, it is not necessary to go through this encoding-
decoding process.
The NetworkStream class has a constructor that takes a Socket
instance as argument. So a NetworkStream instance can be created
from using the Socket instance.
Also the text handling classes, StreamReader and StreamWriter, have
constructors that takes any Stream (FileStream NetworkStream etc) as

13

constructors that takes any Stream (FileStream, NetworkStream, etc.) as
argument. So instances of these classes can be created from a
NetworkStream object.
With instances of StreamReader and StreamWriter, the familiar Read,
ReadLine and Write, WriteLine can be used to exchange text data.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Handling Text in Socket Applications …

The following is a version of the Echo server that uses text handling
methods.

1. using System;
2. using System.Net;g y ;
3. using System.Net.Sockets;
4. using System.Text;
5. using System.IO;
6. class SimpleTcpSocketServer2 {
7. public static void Main() {
8. Socket server = new Socket(AddressFamily.InterNetwork,
9. SocketType.Stream, ProtocolType.Tcp);
10. IPEndPoint localEP = new IPEndPoint(IPAddress.Any, 9050);
11 i d(l l)

14

11. server.Bind(localEP);
12. server.Listen(10);
13. Console.WriteLine("Waiting for Client...");
14. Socket client = server.Accept();
15. IPAddress clientAddress =
16. ((IPEndPoint)client.RemoteEndPoint).Address;
17. Console.WriteLine("Got connection from "+clientAddress);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

Handling Text in Socket Applications …

16. NetworkStream stream = new NetworkStream(client);
17. StreamReader reader = new StreamReader(stream);
18. StreamWriter writer = new StreamWriter(stream);

19. writer.WriteLine("Welcome to my test server");
20. writer.Flush();
21.
22. string message;
23. while((message = reader.ReadLine()) != null) {
24. writer.WriteLine(message);
25. writer.Flush();
26. }
27. client.Close();

15

c e t ose();
28. server.Close();
29. }
30. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Handling Text in Socket Applications …

The following is a version of the Echo Client that uses text handling
methods.

1. using System;
2. using System.Net;g y ;
3. using System.Net.Sockets;
4. using System.IO;
5. using System.Text;
6. class SimpleTcpSocketClient2 {
7. public static void Main() {
8. Socket socket = new Socket(AddressFamily.InterNetwork,
9. SocketType.Stream, ProtocolType.Tcp);
10. IPEndPoint remoteEP = new
11 d i (dd ("127 0 0 1") 9050)

16

11. IPEndPoint(IPAddress.Parse("127.0.0.1"), 9050);
12. try {
13. socket.Connect(remoteEP);
14. }catch (SocketException e) {
15. Console.WriteLine("Unable to connect to server. ");
16. Console.WriteLine(e);
17. return;
18. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Handling Text in Socket Applications …

16. NetworkStream stream = new NetworkStream(socket);
17. StreamReader reader = new StreamReader(stream);
18. StreamWriter writer = new StreamWriter(stream);
19. Console.WriteLine(reader.ReadLine());
20. String input = null;
21. while (true) {
22. Console.Write("Enter Message for Server, Enter to Stop:");
23. input = Console.ReadLine();
24. if (input.Length == 0)
25. break;
26. writer.WriteLine(input);
27. writer.Flush();
28. Console.WriteLine("Echo: "+ reader.ReadLine());

17

28. Console.WriteLine(Echo: reader.ReadLine());
29. }
30. Console.WriteLine("Disconnecting from Server..");
31. socket.Shutdown(SocketShutdown.Both);
32. socket.Close();
33. }
34. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Problems in TCP Communication

Due to stream nature of data exchange in TCP, some
problems may be encountered:
– Too Small Buffer Size

• In real world, you may not know the size of the data. So what happens if more
data arrives than the buffer size?

• In our simple examples, a byte array of size 1024 was used as the buffer size for
the Send and Receive method calls.

• This worked fine because the program was running in a controlled environment, i.e.
both server and client know that the message size will not be more than this size.

– Message Boundary Problem
• This problem is due to its connection-oriented nature, messages are considered to

form a continuous stream of bytes

18

form a continuous stream of bytes.
– TCP uses internal buffers to store messages until they are Received/Sent by applications
– This implies that TCP does not respect message boundaries, i.e. there is no one-to-one

correspondence between number/size of individual messages sent and the number/size of
individual messages received.

• TCP pair (on the Sever and Client side) will ensure that no data is lost.
• The problem is with the applications. How will they know how many times they

need to read before they collect the whole message?

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

10

Problems in TCP Communication …

19KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Problems in TCP Communication …

Solutions (1):

For Text messages only, a solution is to use ReadLine and g y,
WriteLine methods of the StreamReader and StreamWriter
classes respectively.
– WriteLine at the sender will insert end-of-line markers in the

message; thus creating a boundary.
– ReadLine at the receiver will read one line at a time until there is no

more lines to read.

N ti th t th bl f t ll b ff d t

20

Notice that the problem of too small buffer does not even
arise in this case, since the ReadLine and WriteLine
methods will take care of this.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

11

Problems in TCP Communication …

Solutions (2):
Send the size of the message first, before sending the message.

– This is applicable for any type of data where Send and Receive methods are used for
sending and receivingsending and receiving.

Since the receiver knows the total size of the data, it will read the data in a
loop, each time taking note of the actual size returned by the Receive
method and updating the amount so far read until the entire size is read.
A loop similar to the following is used:

1. int total = int.Parse(reader.ReadLine());
2. byte [] buffer = new byte[1024];
3 int recv = 0; int sofar = 0;

21

3. int recv = 0; int sofar = 0;
4.
5. while (sofar < total) {
6. recv = s.Receive(buffer);
7. process(buffer, recv);
8. sofar += recv;
9. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– Richard Blum, C# Network Programming. Sybex 2002.

Lecture notes of previous offerings of SWE344 and ICS343
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

22KFUPM: Dr. El-Alfy © 2005 Rev. 2008

