
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 5.1: C# TCP C/S Programming (Part 1)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Understand the basic underlying concepts of C/S
programming – sockets, ports, TCP, UDP
Learn C# basic classes for writing C/S applicationsLearn C# basic classes for writing C/S applications
Learn how to write a TCP server using TcpListener
class
Learn how to test a TCP server using Telnet
Learn how to write a TCP client using TcpClient
l

2

class

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

Basic Concepts

Involves writing two programs – a Server and a Client
Communication between them is achieved using the
socket programming interface (provided by all modern
Operating Systems).
– It provides methods that a local process calls to communicate with

a remote process

Two approaches in .NET to access the socket interface
– Using the Socket class to program both Servers and Clients.
– Using TcpListener, TcpClient and UdpClient

3

• Much easier than the Socket class so we start writing programs with
this high level classes.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basic Concepts (cont.)
Before writing a C/S
application, decide which
transport layer protocol
to be used (TCP UDPto be used (TCP, UDP,
or none)
Types of Sockets
– Stream socket

• To be used with a
connection-oriented
protocol such as TCP

– Datagram socket

4

g
• To be used with a

connectionless protocol
such as UDP

– Raw socket
• Directly use services of IP

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

TCP vs. UDP
TCP
– Stands for Transmission Control

Protocol
– Connection oriented (i.e. a

UDP
– Stands for User Datagram

Protocol
– Connectionless (i.e. no (

connection is first established
before data exchange begins)

– Data bytes are delivered as
streams (in sequence)

– Provides Error and Flow control
to ensure data reaches its target
reliably.

– Connection is terminated once

(
connection is established at all)

– Data is delivered is packets.
Packet are routed over the
network until they reach their
target.

– No sequencing or any form of
error control is provided

– Thus packets may reach their– Connection is terminated once
one of the communicating
devices requests that

– Drawback: Slow especially if
the network is not perfect

– Thus, packets may reach their
target out of sequence or may
not reach at all, i.e.
Unreliable.

– Advantage : Fast; thus more
suitable for real-time
applications

5KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basic Concepts (cont.)

When programming a Server or a Client, we must associate
it with a Socket Address (also known as EndPoint)
EndPoint is a combination of IP address and Port number

6KFUPM: Dr. El-Alfy © 2005 Rev. 2008

4

Basic Concepts (cont.)

The IP addresses identify communicating nodes, while port
numbers identify communicating applications.
A port number is a 16 bit number; ranges from 0 to 65,535
– Used to uniquely identify a specific application running on a node

Port numbers 0 to 1023 are reserved for well-known
services (hence do not use them for your programs).

7KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basic Concepts (cont.)
Some of the most common TCP port numbers are as follows:

Port Protocol Description

7 Echo Echoes a received datagram back to the sender

9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

20 FTP, Data File Transfer Protocol (data connection)

21 FTP, Control File Transfer Protocol (control connection)

23 TELNET Terminal Network

8

25 SMTP Simple Mail Transfer Protocol

53 DNS Domain Name Server

67 BOOTP Bootstrap Protocol

79 Finger Finger

80 HTTP Hypertext Transfer Protocol

111 RPC Remote Procedure Call

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Basic Concepts (cont.)
Some of the most common UDP port numbers are as follows:

Port Protocol Description

7 Echo Echoes a received datagram back to the sender7 Echo Echoes a received datagram back to the sender

9 Discard Discards any datagram that is received

11 Users Active users

13 Daytime Returns the date and the time

17 Quote Returns a quote of the day

19 Chargen Returns a string of characters

53 Nameserver Domain Name Service

67 Bootps Server port to download bootstrap information

9

68 Bootpc Client port to download bootstrap information

69 TFTP Trivial File Transfer Protocol

111 RPC Remote Procedure Call

123 NTP Network Time Protocol

161 SNMP Simple Network Management Protocol

162 SNMP Simple Network Management Protocol (trap)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming C/S Application

10KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

Basic Network Programming Classes
.NET provides many network programming classes in
System.Net and System.Net.Sockets namespaces.
Main classes needed to write simple TCP Server and
Client:Client:
– IPAddress,
– IPEndPoint
– TcpListener
– TcpClient

11KFUPM: Dr. El-Alfy © 2005 Rev. 2008

IPAddress Class
Used to represent IP
address as an object.
Constructors:

bli IPAdd (l

Has the following
properties:
– Anypublic IPAddress(long

address)
public IPAddress(byte[]
address)

These constructors are
rarely used, since we
hardly have the IP address
represented in bytes or

Any
• Returns the IP address

0.0.0.0 . Normally used
for a server. Sever must
listen for clients on all its
network interfaces.

– Broadcast
R t th b d trepresented in bytes or

long format.
• Returns the broadcast

address: 255.255.255.255

– Loopback
• Returns the loopback

address : 127.0.0.1

12KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

IPAddress Class (cont.)

Parse(): a static method that takes an IP address as a string
and returns an IPAddress object
– is often used to create an instance of IPAddress
Signature
static IPAddress Parse(String address)
Example

IPAddress ip = IPAddress Parse("127 0 0 1");

13

IPAddress ip IPAddress.Parse(127.0.0.1);

NOTE : Parse method does not accept a domain name. To get an IP
address from a domain name, you must use a method of the Dns class.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basic Network Programming Classes…

static bool IsLoopback(IPAddress address) Returns true if address is a loop
b k dd

Another static method, IsLoopback() can be used to test if
an address is a loop back address

The IPEndPoint Class
To represent IPAddress and Port number as a single object.
The most useful constructor of this class has the form:

public IPEndPoint(IPAddress address, int port)

back address

14

e.g: IPEndPoint endPoint = IPEndPoint(IPAddress.Any, 9999);

The class has properties IPAddress and Port, that can be
used to get the corresponding components of the end-point.
Note: IPEndPoint is a derived class of the abstract class,
EndPoint. The other derived class is IrdAEndPoint.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

Basic Network Programming Classes…

The TcpListener Class:
This is used to write a basic TCP Server program.

Method Description

TcpListener (IPAddress,
int port)

Creates and Binds the server to a specific
IPAddress object and port number

TcpListener (IPEndPoint ie) Creates and Binds the server to an
IPEndPoint object

void Start() Starts the server – put it in listen mode

15

p

TcpClient AcceptTcpClient() Accepts connection from a TcpClient

void Stop() Stops the server
bool Pending() Determines if there are pending connections

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Basic Network Programming Classes…
TcpClient Class:

This is used to Write a basic TCP Client program.
Method Description

TcpClient() Creates an instance of TcpClient
TcpClient(IPEndPoint localEP) Creates instance of TcpClient and binds it

to a Local end point
TcpClient(string hostname,

int port)
Creates instance of TcpClient and
connects it to a Remote end point

void Connect(IPEndPoint)
id C t(IPAdd i t)

Connects the client to a server. This is
l if th li t i t d

16

void Connect(IPAddress, int)
void Connect(string, int)

only necessary if the client is created
using one of the first two constructors.

NetworkStream GetStream() Returns a NetworkStream from the
client’s underlying socket.

void Close() Closes the connection and releases all
resources

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Example
Echo Client/Server Application
– An important thing that must be decided when writing a network program is

the protocol - the rule that governs communication between the server and
the client.
I thi l th ill i t ith li t d t l– In this example, the server will communicate with a client under a protocol
summarized using the sequence diagram:

17KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Server Application

The following algorithm shows the process involved in
writing a typical TCP server application.
– a) Create the Server object - e.g using TcpListener class.
– b) Bind the Server to a specific local IPEndPoint.
– c) Place the Server in passive (listening) mode.
– d) Accept the next connection request from a client.
– e) Send acceptance indication to client – welcome
– f) Repeat: Read a request, process the request, and send

b k th lt

18

back the results.
– g) Close the connection when done with a client.
– h) Return to d) for next client.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

10

Programming a Server Application …

The following is an Echo Server using TcpListener class.

1. using System;
2. using System.Net;g y ;
3. using System.Net.Sockets;
4. using System.IO;

5. class SimpleTcpServer {
6. public static void Main() {
7. TcpListener server = new TcpListener(IPAddress.Any, 9050);
8. server.Start();
9.
10 l i i (" i i f li ")

19

10. Console.WriteLine("Waiting for Client...");
11. TcpClient client = server.AcceptTcpClient();
12. Console.WriteLine("Connected with a client");
13.
14. NetworkStream stream = client.GetStream();
15. StreamReader reader = new StreamReader(stream);
16. StreamWriter writer = new StreamWriter(stream);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Server Application …
17. writer.WriteLine("Welcome to my test server");
18. writer.Flush();
19. String line = null;
20. while((line = reader.ReadLine()).Length != 0) {
21. Console.WriteLine(line);
22. writer.WriteLine(line);
23. writer.Flush();
24. }
25. client.Close();
26. server.Stop();
27. }
28. }

20KFUPM: Dr. El-Alfy © 2005 Rev. 2008

11

Using Telnet to test a TCP server

Most modern operating systems provide a simple
general TCP client application, Telnet, that can be
used to test TCP servers.used to test TCP servers.
Telnet comes with all Windows OS platforms.
To start Telnet, simply go command window and
type:

C:\>telnet ipaddress port
h i dd d t th IP dd d

21

where ipaddress and port are the IP address and
the port number on which the server is listening

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Client Application

The following algorithm shows the process involved in
writing a TCP client application.
– a) Create a Client object – e.g using TcpClient class.
– b) Send a Connect-request to a server listening at a

specific EndPoint.
– c) Receive response - usually a welcome message.
– d) Repeat : Send a service request, receive and process

the response.
e) When done notify server of intention to disconnect

22

– e) When done, notify server of intention to disconnect.
– f) Close the connection.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

12

Programming a Client Application …

The following is an Echo Client using TcpClient class.

1. using System;
2. using System.Net;g y ;
3. using System.Net.Sockets;
4. using System.IO;

5. class SimpleTcpClient {
6. public static void Main() {
7. TcpClient client = new TcpClient("localhost", 9050);

8. NetworkStream stream = client.GetStream();
9 d d d ()

23

9. StreamReader reader = new StreamReader(stream);
10. StreamWriter writer = new StreamWriter(stream);
11.
12. String input = reader.ReadLine();
13. Console.WriteLine(input);

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Programming a Client Application …
14. String line = null;
15. do {
16. Console.Write("Enter Message for Server Enter to Stop: ");
17. line = Console.ReadLine();
18. writer.WriteLine(line);
19. writer.Flush();
20. if (line.Length != 0) {
21. line = "Echo: "+ reader.ReadLine();
22. Console.WriteLine(line);
23. }
24. } while(line.Length != 0);
25. client.Close();
26. }

24

26. }
27. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

13

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– Richard Blum, C# Network Programming. Sybex 2002.
– Data Communications and Networking, 4/e. Behrouz A

Forouzan, McGraw-Hill Higher Education
Lecture notes of previous offerings of SWE344 and ICS343
Some other web sites and books; check the course website
atat
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

25KFUPM: Dr. El-Alfy © 2005 Rev. 2008

