
1

INTERNET PROTOCOLS AND INTERNET PROTOCOLS AND

CLIENTCLIENT--SERVER PROGRAMMINGSERVER PROGRAMMING

SWESWE344 344 Client

Fall Semester 2008-2009 (081)

Module 2.2: C# Programming Essentials (Part 2)

Internet

Server

re
qu

es
t

re
sp

on
se

Dr. El-Sayed El-Alfy
Computer Science Department
King Fahd University of Petroleum and Minerals
alfy@kfupm.edu.sa

Objectives

Learn more about how C# programs are organized
Learn how to declare Methods and Classes
Learn how Inheritance and Polymorphism areLearn how Inheritance and Polymorphism are
achieved
Learn how to declare and implement Interfaces
Learn about structures (struct) and Enumerators
(enum)

2

Learn how to raise and handle exceptions
Learn how to do basic file IO using Streams.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

2

Organizing Types
C# provides full object-oriented technology,
– including inheritance, polymorphism, and encapsulation

A C# program is a collection of types
D fi d i fil i d b d li d i t– Defined in source files, organized by namespaces, and complied into
assemblies (.exe or .dll files).

– These organizational units generally overlap
• a source file can contain many namespaces and a namespace can span

several source files.
• an assembly can contain several namespaces and a namespace can

spread across several assemblies.
– However, for simplicity put related classes into a single namespace,

i i l fil d il i i i l bl

3

in a single source file and compile it into a single assembly .
C# has similar concepts of classes, interfaces, inheritance
and polymorphism to Java
– We’ll concentrate on explaining the differences between them

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Classes

A class defines a template from which objects are
created
A class is declared using the class keywordA class is declared using the class keyword

[access-modifiers] class class-name{
class-body

}

A class in C# can contain
– Fields constructors methods and inner classes (helper

4

– Fields, constructors, methods and inner classes (helper
classes)

– Properties, events, indexers and operators
Fields and methods may either be instance (default)
or static

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

3

Example
1. using System;
2. namespace Banking {
3. public class BankAccount {
4. const double charityRate = 2.5;
5. static int count;
6. string name;
7. int accountNumber;
8. double balance;
9. public BankAccount(string name) {
10. this.name = name;
11. accountNumber = ++count;
12. }
13. public BankAccount(string name, double amount) : this(name){
14. balance = amount;
15. }

Invoke another
constructor

5

15. }
16. public void Deposit(double amount) {
17. if (amount > 0)
18. balance += amount;
19. }
20. public void Withdraw(double amount) {
21. if (balance >= amount)
22. balance -= amount;
23. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example …

24. public double GetBalance() {
25. return balance;
26. }
27. public double GetAnnaulCharity() {
28. double charity = balance * charityRate /100;
29. balance -= charity;
30. return charity;
31. }
32. public static void PrintCustomerCount() {
33. Console.WriteLine("Number of Customers = "+count);
34. }
35. public override String ToString() {

6

p g g() {
36. return "Acc #:"+accountNumber + ":"+name + ": "+balance;
37. }
38. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

To override a method

4

Example …
39. class TestAccount {
40. public static void Main() {
41. BankAccount acc1 = new BankAccount("Sami", 2000);
42. BankAccount acc2 = new BankAccount("Omar");
43. acc1.Deposit(3000);
44. acc1.Withdraw(4000);
45. Console.WriteLine(acc1);
46. acc2.Deposit(5000);
47. acc2.Withdraw(2000);
48. Console.WriteLine(acc2);
49. BankAccount.PrintCustomerCount();
50. }
51. } // end of TestAccount class
52. } // end of namespace
53.

7

53.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

During execution

Class Members

Fields
– A field is a member variable used to hold a value

(represents an attribute).(p)
– You can apply several modifiers to a field, depending on

how you want it to be used such as
• const -- specifies that the value of the field or the local variable

cannot be modified (A const field can only be initialized at the
declaration of the field)

• static -- declares a member that belongs to the type itself rather
th t ifi bj t

8

than to a specific object.
• readonly – declares a field that can only be assigned values as

part of the declaration or in a constructor in the same class;
readonly fields can have different values depending on the
constructor used; while a const field is a compile-time constant,
the readonly field can be used for runtime constants

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

5

Class Members

Fields …
– Examples

public const double x = 1.0, y = 2.0, z = 3.0;p , y , ;
public static const int c1 = 5.0;
public static const int c2 = c1 + 100;

– Default field values
Type default value

9

All numeric types 0
bool false
char ‘\0’
string and other object references null

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Class Members …

Methods
– A method is a group of declarations and other statements that

perform a specific task (define the behavior of the class instances)
D fi i th d– Defining a method
[access-modifiers] return-type method-name([para-type param-name, …..]){

method-body
}

– If a method returns a value, it must have a return statement
– If a method does not return a value, the return statement is optional

and the return type must be void

10

– You can define local variable inside the method
– If a parameter or local variable has the same name as a field name,

the field name is hidden
• To access the field name, use this keyword (a reference to the current

object)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

6

Class Members …

Methods …
– The keyword this is used for two main purposes:

• Resolving name conflict between instance variables and method g
or constructor parameters.

• Calling another constructor from a constructor in the same class.
However, we note that the call is placed in the header of the
calling constructor

• Example

public BankAccount(string name double amount):

11

public BankAccount(string name, double amount):
this(name){

balance = amount;
}

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Invoke another
constructor

Class Members …

Passing parameters
– By value – changes made to the parameter inside the method are not

affecting the actual variable in the method call
The object reference is passed as a al e b t it can be sed to the• The object reference is passed as a value but it can be used to the
content of the object

– By reference – use ref before the parameter in the method signature
and call; in this case changes to the parameter affects the variable in
the method call
• Try to minimize using call by reference

– When passing parameters by value or by reference, the variables that
are passed must be assigned values before the method is called

12

are passed must be assigned values before the method is called

Out parameters
– A parameter can be declared to be out in the method signature and

call; meaning it is used to return a value (similar to passing by
reference except that the variable is not initialized before passing it to
the method)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

7

Class Members …

Calling a method
– A class (static) method is called by
Class-Name.Method-Name(arguments)Class Name.Method Name(arguments)

– An instance method is called
Object-Reference.Method-Name(arguments)

Method overloading
– Define methods in a class that have the same name but

different parameters (different signatures)

13

p (g)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Class Members …

Constructors
– A method that has the same name as the class name

(usually used to initialize fields using parameters)
– A constructor does not have a return type
– If no constructor is defined, there will a default one
– You can define multiple overloaded constructors that

accept different parameters
– You can define constructors that allow copying the fields

from one object to another (copy constructors)
E l

14

• Example
Student(Student x){
name = x.name;
quiz1 = s.quiz1;
quiz2 = s.quiz2;

}

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

8

Class Members ...

Properties
– Are the normal get and set methods we have in Java but in C# the set

and get operations are unified into a single unit.
Th ti ll d t fi ld b th ’ t ll– They are sometimes called smart fields because they’re actually
methods that look like fields to the class’s clients
• They behave exactly like methods. They are inherited by subclasses and

they can be hidden or overridden. They can have any of the modifiers
that a normal method can have.

– Allow the client a greater degree of abstraction because it doesn’t
have to know whether it’s accessing the field directly or whether an
accessor method is being called

15

accessor method is being called.
– To define a property, you must have at least one of get or set blocks.
– Notice that compiler automatically defines a variable, value, in the set

block to receive the set argument.
– Private fields and properties promote encapsulation

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Class Members ...

Properties…
1. class BankAccount {
2. private double balance;p ;
3. //....
4.
5. public double Balance { // define a property
6. get{ return balance; }
7. set{ balance = value; } // value is implicit parameter
8. }
9. }
10. //...
11 // t b k t

16

11. // create a bank account
12. BankAccount acc = new BankAccount();
13. acc.Balance = 12000.0; // implicit call to set
14. double z = acc.Balance; // implicit call to get

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

9

Class Members ...

Using Access Modifiers
– To achieve encapsulation, a type may hide itself from other types or

other assemblies by adding one of the following access modifies:

public Members marked public are visible to any method of any
class. Default for interfaces and enums.

private Members in class A that are marked private are accessible
only to methods of class A. Default for classes (and structs)

Protected Members in class A that are marked protected are
accessible to methods of class A and also to methods of
classes derived from class A.

17

internal Members in class A that are marked internal are accessible
to methods of any class in A's assembly.

protected internal Members in class A that are marked protected internal are
accessible to methods of class A, to methods of classes
derived from class A, and also to any class in A's assembly.
This is effectively protected OR internal.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Objects

To declare a reference for a bank account
BankAccount acc1; // acc1 is null

To create an object use new operator and aTo create an object, use new operator and a
constructor
acc1 = new BankAccount("Omar");

Before trying to access an object’s fields or methods
through an object reference, the object reference

t f t l bj t (i i t ll)

18

must refer to a real object (i.e., is not null)

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

10

Inheritance
To achieve code re-usability, a class can inherit from another
class – in C#, only single inheritance is allowed.
There is no “extends” keyword. Instead, a colon is used
after the header of the derived class followed by base classafter the header of the derived class followed by base class
identifier
– A class can extend only one class but it can implement several

interfaces
– The super class and the interfaces are listed after the colon

separated by commas.
– If there is a super class being extended, then it must appear first in

the list.

19

the list.
The base keyword:
– is used instead of the Java’s super, to refer to a superclass member.
– is used to call the constructor of the base class from within a

subclass. However, like this keyword, such a call should be in the
heading of the calling constructor.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example
1. class BankAccount{
2. private string num;
3. private double balance;

4 bli B kA t(t i d bl b l){4. public BankAccount(string num, double balance){
5. this.num = num ;
6. this.balance = balance;
7. }
8. //...
9. }
10. class SavingAccount:BankAccount {
11. private double interest;
12.

Extend/inherit

20

13. public SavingAccount(string num, double balance,
14. double interest): base(num, balance){
15. this.intreset = interest;
16. }
17. //...
18. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

11

Inheritance …

Overriding and hiding:
– In C#, overriding is not allowed by default.
– The base class must indicate that it is willing to allow itsThe base class must indicate that it is willing to allow its

method to be overridden by declaring the method as
virtual, abstract or override.

– The subclass must also indicate that it is overriding the
method by using the override keyword.

– The effect of overriding is the same as in Java –
Polymorphism At run time a method call will be bound

21

Polymorphism. At run-time, a method call will be bound
to the method of the actual object.

– A subclass may also decide to hide an inherited method
instead of overriding it by using the new keyword

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example
1. using System;
2. class A {
3. public virtual void method() {
4. Console.WriteLine(" In A");
5. }
6. }
7. class B : A {
8. public override void method() { // override inherited method
9. Console.WriteLine("In B");
10. }
11. }
12. class C : B {
13. public new void method() { // hide inherited method
14. Console.WriteLine("In C");
15. }

22

15. }
16. }
17. class Test {
18. public static void Main() {
19. C c = new C(); c.method(); // calls C's method
20. B b = c; b.method(); //calls B's method
21. A a = c; a.method(); //calls B's method
22. }
23. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

12

Casting Objects
Upcast: casting an object of a derived class to the base class
Downcast: casting an object of a base class to a derived
class
– The as operator is used for type-conversion (down-casting).The as operator is used for type conversion (down casting).
– Example

Student s = new GraduateStudent(…);
GraduateStudent gs;
gs = (GraduateStudent) s;
gs = s as GraduateStudent; // another pretty equivalent

– The only difference is when the object in s is not compatible with
GraduateStudent. In that case, the first statement throws
InvalidCastException, while the second assigns null to gs.

23

The is operator is like the instanceof operator in Java. It
checks if an object is compatible with a type.
– Example:

if (s is GraduateStudent)
gs = s as GraduateStudent;

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Abstract Classes
A class that is declared using the abstract keyword
It may have abstract methods as well as implemented methods
An abstract method provides a method name and signature and must be
implemented in all derived classes.
Abstract classes establish a base for derived classes, but it is not legal toAbstract classes establish a base for derived classes, but it is not legal to
instantiate an object of an abstract class.
An abstract class can be derived from another abstract class

1. using System;

2. public abstract class Shape {
3. public String name() {
4. return GetType().Name;
5. }

24

5. }
6. public abstract double Area();
7. public abstract double Perimeter();

8. public override String ToString() {
9. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
10. }
11. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

13

Sealed Classes

Similar to final classes in Java, classes marked
sealed cannot be used to derive other classes

sealed public class Student{
…
}

A method can be marked as sealed in a non sealed

25

A method can be marked as sealed in a non-sealed
class to prevent overriding it in a derived class
Classes are most often marked sealed to prevent
accidental inheritance.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Interfaces

Like Java, Interfaces are used to minimize the effect
of lack of multiple inheritance.
Interfaces contain only method specification withoutInterfaces contain only method specification without
implementation. The methods are implicitly public
and abstract – declaring them as such is an error.
Unlike Java, interfaces cannot have even constant
fields.
A class can implement multiple interfaces

26

A class can implement multiple interfaces.
However, there is no “implements” keyword.
Instead, a colon is used for implements.

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

14

Example1
1. using System;
2. public interface MyComparable {
3. int CompareTo(Object obj);
4. }
5. public abstract class Shape : MyComparable {
6. public String name() {
7. return GetType().Name;
8. }
9. public abstract double Area();
10. public abstract double Perimeter();
11. public override String ToString() {
12. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
13. }
14. public int CompareTo(Object obj) {
15. Shape shape = (Shape) obj;

27

15. Shape shape (Shape) obj;
16. if (Area()< shape.Area())
17. return -1;
18. else if (Area() > shape.Area())
19. return 1;
20. else
21. return 0;
22. }
23. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example2
1. using System;
2. namespace Shapes {
3. public abstract class Shape : IComparable {
4. public String name() {
5. return GetType().Name;
6. }
7. public abstract double Area();
8. public abstract double Perimeter();
9. public override String ToString() {
10. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
11. }
12. public int CompareTo(Object obj) {
13. Shape shape = (Shape) obj;
14. if (Area()< shape.Area())
15. return -1;

28

15. return 1;
16. else if (Area() > shape.Area())
17. return 1;
18. else
19. return 0;
20. }
21. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

15

Example2 …
22. public class Rectangle : Shape {
23. private double length;
24. private double width;
25.
26. public double Length {
27. get {return length;}
28. set {length = value;}
29. }
30. public double Width {
31. get {return width;}
32. set {width = value;}
33. }
34. public Rectangle(double length, double width) {
35. this.length = length;
36. this.width = width;

29

36. this.width width;
37. }
38. public override double Area() {
39. return length*width;
40. }
41. public override double Perimeter() {
42. return 2*length + 2*width;
43. }
44. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Example2 …
45. public class Square : Rectangle {
46. public Square(double length) : base(length, length) {
47. }
48. }
49. public class Circle : Shape {
50. private double radius;
51. public double Radius {
52. get {return radius;}
53. set {radius = value;}
54. }
55. public Circle(double r) {
56. radius = r;
57. }
58. public override double Area() {
59. return Math.PI * (radius * radius);

30

59. return Math.PI (radius radius);
60. }
61. public override double Perimeter() {
62. return 2.0 * Math.PI * radius;
63. }
64. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

16

Example2 …
65. public class TestShapes {
66. public static void Main(String[] args) {
67. Shape[] shape = new Shape[3];
68. shape[0] = new Rectangle(20, 10);
69. shape[1] = new Square(10);
70. shape[2] = new Circle(7);
71. for (int i=0; i<shape.Length; i++)
72. Console.WriteLine(shape[i]);
73. foreach (Shape s in shape) {
74. if (s is Circle) {//using is and as operators
75. Circle c = s as Circle;
76. Console.WriteLine("The radius is: "+c.Radius);
77. }
78. }
79. Array.Sort(shape); //sorting the shapes

31

79. Array.Sort(shape); //sorting the shapes
80. Console.WriteLine("sorting");
81. for (int i=0; i<shape.Length; i++)
82. Console.WriteLine(shape[i]);
83. }
84. }
85. }

KFUPM: Dr. El-Alfy © 2005 Rev. 2008

Resources

MSDN Library
– http://msdn.microsoft.com/en-us/default.aspx

Books
– C# 3.0 The Complete Reference, 3E, 2005
– C# 3.0 in a Nutshell: A Desktop Quick Reference, 2007
– Pro C# 2008 and the .NET 3.5 Platform, 4E, 2007
– C# How to Program, By Deitel

– Richard Blum, C# Network Programming. Sybex 2002.
Lecture notes of previous offerings of SWE344 and ICS343 p g
Some other web sites and books; check the course website
at
– http://faculty.kfupm.edu.sa/ics/alfy/files/teaching/swe344/index.htm

32KFUPM: Dr. El-Alfy © 2005 Rev. 2008

