
May 08 1

Main Memory Management

Chapter 8:

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

May 08 2

Objectives/Outline

Objectives
Describe various ways of
organizing memory hardware
(which are pertinent to
various memory managing
techniques)
Discuss various memory
management techniques
(including paging and
segmentation)
Provide a detailed description
of Intel Pentium which
supports both pure
segmentation and
segmentation with paging

Outline
Background
Swapping
Contiguous Allocation
Paging
Segmentation
Segmentation with Paging
Example: Intel Pentium

May 08 3

Background

A program (together with the data it needs) must be brought (from
the disk) into main memory (at least partially) before execution
A typical instruction execution cycle:

The CPU first fetches instructions from memory according to the value
of the program counter
Decode the instruction, may cause operands to be fetched from memory
Execute the instruction, may need to store results in memory

To improve CPU utilization and response time, the computer must
keep several processes in memory
Memory management – is responsible for sharing memory among
processes to ensure correct operation
There are many memory management schemes ranging from a
primitive bare machine approach to paging and segmentation

The effectiveness and selection of a memory management scheme for a
system depends on several factors especially hardware support

May 08 4

Basic Hardware

Main memory consists of a large
array of words or bytes each with its
own address
Main memory and registers are only
storage CPU can access directly

Register access in one CPU clock (or
less)
Main memory can take many cycles
A cache is used to improve the access
time

Memory system only sees a sequence
of memory addresses without
knowing how they are generated nor
whether they are for instructions or
data
A pair of base and limit registers
define the address space

May 08 5

HW address protection with base and limit registers

Protection of memory space is achieved by CPU hardware

May 08 6

Address Binding

A user program goes through
several steps

Compile
Link
Load
Execute

Addresses are represented in
different ways during these steps

Source code – symbolic addresses
Object module – relocatable
addresses
Binary memory image – absolute
addresses

Address binding is mapping from
one address space to another

May 08 7

Address Binding (cont.)

Address binding of instructions and data to memory
addresses can happen at any of three different stages:

Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes
Load time: If memory location is not known at compile time,
compiler must generate relocatable code
Execution time: Binding is delayed until run time if the
process can be moved during its execution from one memory
segment to another. Need hardware support for address
maps (e.g., base and limit registers)

May 08 8

Logical vs. Physical Address Space

Because of swapping, a process may occupy different main memory
locations during its lifetime

Hence physical memory references by a process cannot be fixed

This problem is solved by distinguishing between logical address and
physical address

Logical address : address generated by the CPU; also referred to as
virtual address
Physical address : address seen by the memory unit

During compile-time and load-time, logical and physical addresses are
the same, but during execution-time, logical (virtual) and physical
addresses are different
Hardware device called memory-management unit (MMU) maps
virtual to physical address

May 08 9

Dynamic relocation using a relocation register

In a simple MMU scheme, the value in the relocation register is added
to every address generated by a user process at the time it is sent to
memory

May 08 10

Dynamic Loading

Routine is not loaded until it is called
Better memory-space utilization; unused routine is
never loaded
Useful when large amounts of code are needed to
handle infrequently occurring cases
No special support from the operating system is
required; only a library to implement dynamic loading
Implemented through program design

May 08 11

Dynamic Linking

Linking postponed until execution time
Small piece of code, stub, used to locate the appropriate
memory-resident library routine
Stub replaces itself with the address of the routine, and
executes the routine
Operating system needed to check if routine is in
processes’ memory address
Dynamic linking is particularly useful for libraries

May 08 12

Overlays

Early operating systems did not have nice ways of
managing “virtual” memory (more later) so
everything had to fit into the (small!) physical
memory
Users developed techniques to allow large
programs to fit by reusing memory when certain
components weren't needed
A program was organized (by the user) into a
tree-like structure of object modules, called
overlays

May 08 13

Overlays for a Two-Pass Assembler

May 08 14

Overlays

Keep in memory only those instructions and data that are needed
at any given time

Needed when process is larger than amount of memory allocated
to it

Implemented by user, no special support needed from operating
system, programming design of overlay structure is complex

Therefore, automatic techniques emerged to run large programs
in a limited physical memory

May 08 15

Swapping

A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory to continue execution
Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these
memory images
Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed
Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped
Modified versions of swapping are found on many systems, i.e.,
UNIX, Linux, and Windows
System maintains a ready queue of ready-to-run processes which
have memory images on disk

May 08 16

Swapping (cont.)

Schematic View of Swapping

May 08 17

Swapping (cont.)

The responsibilities of a swapper include:
Selection of processes to swap out

criteria: suspended/blocked state, low priority, time spent in
memory

Selection of processes to swap in
criteria: time spent swapped out, priority

Allocation and management of swap space on a swapping device
Swap space may be:

system wide (normal)
dedicated to specific users/processes

May 08 18

Contiguous Memory Allocation

Main memory must accommodate both the OS and the
various user processes
Main memory usually is divided into two partitions:

Resident operating system, usually held in low memory with
interrupt vector
User processes then held in high memory

Relocation registers used to protect user processes
from each other, and from changing operating-system
code and data

Base register contains value of smallest physical address
Limit register contains range of logical addresses – each
logical address must be less than the limit register
MMU maps logical address dynamically

May 08 19

Memory Protection: Hardware Support for Relocation
and Limit Registers

May 08 20

Continuous Memory Allocation (cont.)

Multiple-partition allocation
Hole – block of available memory; holes of various size are scattered
throughout memory
When a process arrives, it is allocated memory from a hole large
enough to accommodate it
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

When memory is partitioned, we can have: a) fixed partition or b)
dynamic partition

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

May 08 21

Fixed Partition

Partition main memory into a set of non overlapping fixed-
sized partitions
Main memory use is inefficient. Any program, no matter
how small, occupies an entire partition. This is called
internal fragmentation
Unequal-size partitions lessens these problems
Equal-size partitions was used in early IBM’s OS/MFT
(Multiprogramming with a Fixed number of Tasks)
This method is no longer used

May 08 22

Dynamic Partitioning

Partitions are of variable length and number
A process is allocated exactly as much memory as it requires
Eventually holes are formed in main memory. This is called
external fragmentation
Must use compaction to shift processes so they are
contiguous and all free memory is in one block
Used in IBM’s OS/MVT (Multiprogramming with a Variable
number of Tasks)
For example, assume that we have 4 processes: process 1 (
320 K), process 2 (224 K), process 3 (228 K), and process
4 (128 K)

May 08 23

Dynamic Partitioning (Example)

A hole of 64K is left after loading 3 processes
Eventually each process is blocked. The OS swaps out process 2 to
bring in process 4

May 08 24

Dynamic Partitioning (Example)

another hole of 96K is created
Eventually each process is blocked. The OS swaps out process 1 to
bring in again process 2 and another hole of 96K is created...
Compaction would produce a single hole of 256K

May 08 25

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes
First-fit: Allocate the first hole that is big enough
Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size. Produces the smallest
leftover hole
Worst-fit: Allocate the largest hole; must also search entire list.
Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed
and storage utilization

May 08 26

Fragmentation

Fragmentation is the unintentional division of a large space
into smaller, disconnected chunks of space
There are two types of Fragmentation:

Internal Fragmentation
Waste of memory within a partition, caused by the difference between
the size of a partition and the process loaded into it
This can be severe in static (i.e. fixed) partitioning schemes

External Fragmentation
Waste of memory between partitions, caused by scattered
noncontiguous free space
Total memory space exists to satisfy a request, but it is not contiguous
Can be severe in dynamic partitioning schemes

May 08 27

External Fragmentation

A solution to external fragmentation is compaction
Shuffle memory contents to place all free memory together in
one large block
Compaction is possible only if relocation is dynamic, and is
done at execution time.
If addresses are relocated statically at assembly or load time,
then compaction is not possible
Problems with compaction: I/O problem

Latch job in memory while it is involved in I/O
Do I/O only into OS buffers

Another possible solution is to permit the logical-
address space of a process to be noncontiguous

May 08 28

Paging

Logical address space of a process can be noncontiguous
Process is allocated physical memory
Basic Method of Paging:

Divide physical memory into fixed-sized blocks called frames (size is
power of 2, between 512 bytes and 16MB bytes)
Divide logical memory into blocks of same size called pages
To run a program of size n pages, need to find n free frames
External fragmentation is resolved but can have internal
fragmentation

If pages are 2,048 bytes, a process of 72,766 bytes needs 35 pages plus
1,086 bytes. That is, we need to allocate 36 frames resulting in an
internal fragmentation
What is the size of the internal fragmentation???

Smaller page size is preferred but can lead to increased overhead

May 08 29

Address Translation Scheme

Address generated by CPU is divided into:
Page number (p)

used as an index into a page table which contains base address of each
page in physical memory

Page offset (d)
combined with base address to define the physical memory address that is
sent to the memory unit

Page size is defined by the hardware and is usually a power of 2
Example:

If the logical address space is and a page size is
Then, the logical address is

m2 n2
ndnmp =−= and

May 08 30

Address Translation Architecture

N.B. relocation can be done by changing the page table

May 08 31

Paging Example

May 08 32

Paging Example (cont.)

Using a page size of 4
bytes
Physical memory of 32
bytes (i.e., 8 pages)
The user’s view of
memory can be mapped
into physical memory as
shown in the figure

Example, logical address 3
(00011)

(page 0, and offset 3)
maps to physical address
23 = 5 X 4 + 3

May 08 33

Free Frames

When a process arrives
to be executed, its size
(expressed in pages) is
examined

Each page of the
process needs one
frame
If the process requires n
pages, at least n frames
must be available in
memory
Allocate pages to frames
in the free frame list
and insert a record in
the page table Before allocation After allocation

May 08 34

Implementation of Page Table

Each OS has its own methods of storing page tables
Some OSs allocate a page table for each process
A pointer to the page table is stored in the process control block
(PCB)
When a dispatcher starts a process, it must define the correct
hardware page table values from the stored page table

Hardware implementation of page table
Implement the page table as a set of dedicated registers

This method is satisfactory if the page table is reasonably small (
e.g. 256 entries)
These registers must be very efficient in paging address translation
Unfortunately, page tables can be very large (one million entries)

Must have alternatives

May 08 35

Implementation of Page Table (cont.)

Page table is kept in main memory
Page-table base register (PTBR) points to the page
table

Changing between page tables requires changing only this one
register. This reduces the time for context switching

The problem with this scheme is the time required to
access a user memory location (two memory accesses,
why?)
The two memory access problem can be solved by the
use of a special, fast hardware cache called translation
look-aside buffer (TLB) (an associate high speed
memory)

May 08 36

Paging Hardware With TLB

May 08 37

Associative Memory

Associative memory is a special, small, and fast (but
expensive) lookup hardware
Associative memory -- parallel search

When the associative memory is represented with the page
number, the page number is compared with all frames
simultaneously

If a frame is found, get frame # out

Otherwise get frame # from page table in memory

Page # Frame #

May 08 38

Effective Access Time

Associative Lookup (i.e., to find the
desired page number in TLB) = ε
time unit

Assume memory cycle time (i.e., to access memory) is m
microseconds
Hit ratio is percentage of times a page number is found in
the associative registers
Hit ratio = α
Effective Access Time (EAT)
EAT = (m + ε) α + (2m + ε)(1 – α)

= 2m + ε – αm

May 08 39

Memory Protection

Memory protection implemented by associating
protection bit with each frame
Valid-invalid bit is attached to each entry in page table:

“valid” indicates the associated page is in the process’ logical
address space
“invalid” indicates the page is not in the process’ logical
address space

We can easily extend this approach to provide a finer
level of protection

Read-only, read-write, or execute-only

May 08 40

Valid (v) or Invalid (i) Bit In A Page Table

In a system with 14-bit
address space (0 to
16383)
We may have a program
that uses only addresses
0 to 10,468
Given a page size of 2
KB, we get the situation
in the figure

May 08 41

Outline

Shared pages
Page table structure

Hierarchical Paging
Hashed Page Tables
Inverted Page Tables

May 08 42

Shared Pages

Shared code
One copy of read-only (reentrant) code shared among processes
(i.e., text editors, compilers, window systems).
Shared code must appear in same location in the logical address
space of all processes

Private code and data
Each process keeps a separate copy of the code and data
The pages for the private code and data can appear anywhere in
the logical address space

May 08 43

Shared Pages Example

May 08 44

Hierarchical Page Tables

Most modern OS support large logical address space ()
Consider a system with 32-bit logical address space and 4 KB page size

Assume that each entry consists of 4 bytes, then each process may need up to 4
MB of physical space just to allocate the page table (in contiguous)

Solution: Break up the logical address space into multiple page tables
A simple technique is a two-level page table (to spread the table)
Two-Level Paging Example :

A logical address (on 32-bit machine with 4K page size) is divided into:

where is an index into the outer page table, and is the displacement within
the page of the outer page table

page number page offset

p1 p2 d

10 10 12

p1 p2

6432 2 to2

May 08 45

Hierarchical Page Tables (cont.)

Address Translation for a two-
level 32-bit paging architecture

A two-level page table scheme
May 08 46

Hashed Page Tables

Common in address spaces > 32 bits
The logical (virtual) page number is hashed into a page
table
This page table contains a chain of elements hashed to
the same location
Each element consists of

The logical page number
The value of the mapped page frame
A pointer to the next element in the linked list

Logical page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted

May 08 47

Hashed Page Table Architecture

May 08 48

Inverted Page Tables

One entry for each real page of memory
Entry consists of the virtual address of the page stored
in that real memory location, with information about
the process that owns that page
Decreases memory needed to store each page table,
but increases time needed to search the table when a
page reference occurs
Use hash table to limit the search to one — or at most
a few — page-table entries

May 08 49

Inverted Page Tables Architecture

May 08 50

Segmentation

Memory-management scheme supports user view of memory
A program is a collection of segments. A segment is a
variable-size logical unit such as

Main program
Procedure
Function
Object
Local variables, global variables
Stack
Arrays, etc

May 08 51

Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>

Segment table – maps two-dimensional physical addresses
Each table entry has:

base – starting physical address where segments reside in memory
limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment
table’s location in memory
Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

May 08 52

Segmentation Architecture

Relocation
dynamic
by segment table

Sharing
shared segments
same segment number

Allocation
first fit/best fit
external fragmentation

May 08 53

Segmentation Architecture

Protection: with each entry in segment table associate:
validation bit = 0 ⇒ illegal segment
read/write/execute privileges

Protection bits associated with segments; code sharing
occurs at segment level
Since segments vary in length, memory allocation is a
dynamic storage-allocation problem
A segmentation example is shown in the following diagram

May 08 54

Segmentation Hardware

May 08 55

Segmentation Example

May 08 56

Sharing of Segments

May 08 57

Segmentation with Paging

Solves problems of external fragmentation and lengthy search
Implementation:

Each segment is broken into pages
Each segment has a page table
Each entry of the segment table has a segment base and a segment
limit. The segment limit is used to check for address validity
The linear address is divided into a page number and a page offset
The corresponding physical address is found by using page table

Segmentation with Paging differs from pure segmentation
The segment-table entry contains not the base address of the segment, but
rather the base address of a page table for this segment

May 08 58

MULTICS Address Translation Scheme

May 08 59

The Intel Pentium

CPU

Segmentation
Unit

Paging
Unit Physical

Memory

Logical address =
(selector, offset)

Selector =(s,g,p)

Linear
address

Physical
address

LDT

GDT

logical address
space

MMU

May 08 60

Intel 30386 Address Translation

May 08 61

Linux on Intel 80x86

Uses minimal segmentation to keep memory management
implementation more portable
Uses 6 segments:

Kernel code
Kernel data
User code (shared by all user processes, using logical addresses)
User data (likewise shared)
Task-state (per-process hardware context)
LDT

Uses 2 protection levels:
Kernel mode
User mode

May 08 62

Memory Management: Summary

Address Binding
Swapping
Contiguous Memory Allocation

Internal and external fragmentation

Paging
Page table structure

Segmentation
Segmentation with Paging

May 08 63

End of Chapter 8

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

