
March 08 1

Process Synchronization

Chapter 6:

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the
textbook and its complementary resources

March 08 2

Objectives/Outline

Objectives
Introduce the critical-section
problem whose solutions can
be used to ensure the
consistency of shared data
Present both software and
hardware solutions
Introduce the concept of
atomic transaction
Describe mechanisms to
ensure atomicity

Outline
Background
The Critical-Section Problem
Peterson’s Solution
Synchronization Hardware
Semaphores
Classic Problems of
Synchronization
Monitors
Synchronization Examples
Atomic Transactions

March 08 3

Background

Cooperating processes are dependent processes that can affect or
be affected by each other.
Reasons for cooperating processes:

Information sharing, modularity, computation speed-up, convenience
Concurrent access to shared data may result in data inconsistency
(race condition).

Maintaining data consistency requires synchronization mechanisms to
ensure the orderly execution of cooperating processes
Synchronization requires some form of communication

In order to cooperate, processes must be able to:
Communicate with one another - Passing information between two or
more processes
Synchronize their actions - Coordinating access to shared resources

Hardware (e.g., printers, drives), Software (e.g., shared code), Files (e.g.,
data), Variables (e.g., shared memory locations)

March 08 4

Background (cont.)

Just like shuffling cards, the instructions of two
processes are interleaved arbitrarily
For cooperating processes, the order of some
instructions is irrelevant. However, certain instruction
combinations must be prevented
For example:
Process A Process B concurrent access

A = 1; B = 2; does not matter

A = B + 1; B = B * 2; important!

March 08 5

Background (cont.): A Concurrency example

time Person A Person B
3:00 Look in fridge. Out of milk
3:05 Leave for store.
3:10 Arrive at store. Look in fridge. Out of milk
3:15 Buy milk. Leave for store.
3:20 Leave the store. Arrive at store.
3:25 Arrive home, put milk away. Buy milk.
3:30 Leave the store.
3:35 Arrive home. OH! OH!

Having too much milk isn't a big deal, but in
terms of data access there is a problem

New milk/data may overwrite the old data
What about wasted resources? - too much milk

March 08 6

Background (cont.): Producer-Consumer w
Bounded Buffer

Producer process
while (true) {

while (counter == BUFFER_SIZE)
; /* do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}

Consumer process
while (true) {

while (counter == 0)
; /* do nothing */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Although the producer and consumer routines are correct separately, they may
not function correctly when executed concurrently

For example: if count = 5 initially and both the producer and consumer are
running concurrently, then count can be either 4, 5, or 6.

March 08 7

Producer-Consumer w Bounded Buffer (cont.)

The statement “count++” may
be implemented in machine
language as:

register1 = counter
register1 = register1 + 1
counter = register1

The statement “count--” may
be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

If both the producer and
consumer attempt to update
the buffer concurrently, the
assembly language
statements may get
interleaved

Interleaving depends upon
how the producer and
consumer processes are
scheduled

March 08 8

Producer-Consumer w Bounded Buffer (cont.)

Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

The value of count may be either 4 or 6, where the correct result
should be 5
Hence, count++ and count-- must be performed atomically

Atomic operation means an operation that completes in its entirety
without interruption

March 08 9

The Critical-Section Problem

n processes all competing to use some shared data
Each process has a code segment, called critical section, in
which the shared data may be changed

E.g. changing common variables, writing a file, etc

Problem – ensure that when one process is executing in its
critical section, no other process is allowed to execute in
its critical section
There is no problem with processes concurrently being in
critical sections for different shared resources!

March 08 10

The Critical-Section Problem (cont.)

We want to execute critical sections atomically
Treating these as atomic operations is done to ensure that cooperating
processes execute correctly

Otherwise part of a critical section might be done then another process
could do its critical section and then the first could finish

In the example, we had two people/processes buying milk using the
same technique
It's also possible for processes with different critical sections to access
the same resource
Regardless, only one process can be in a critical section accessing a
given resource at a time

A critical section exists because of a shared resource. As there may be
many shared resources, a process can have different critical sections for
various resources

March 08 11

The Critical-Section Problem (cont.)

General structure of a process
do {

entry section
critical section (CS)

exit section
remainder section

} while (true);

March 08 12

The Critical-Section Problem (cont.)

A solution to the critical-section problem MUST satisfy:
Mutual Exclusion: At any time, at most one process can be
executing critical section (CS) code
Progress: If no process is in its CS and there are one or more
processes that wish to enter their CS, it must be possible for those
processes to negotiate who will proceed next into CS

No deadlock
no process in its remainder section can participate in this decision

Bounded Waiting: After a process P has made a request to enter its
CS, there is a limit on the number of times that the other processes
are allowed to enter their CS, before P’s request is granted

Deterministic algorithm, otherwise the process could suffer from
starvation

March 08 13

Two-Process Solution to the Critical-Section
Problem --- Algorithm I

turn := 0;
Process P0:
repeat
while(turn!=0){};

CS
turn:=1;

RS
forever

Process P1:
repeat
while(turn!=1){};

CS
turn:=0;

RS
forever

Algorithm I uses a shared variable (turn), which is
initially assigned 0. Algorithms I:

Satisfies mutual exclusion
But not progress (i.e., processes MUST strictly alternate turns)

March 08 14

flag[0]:=false;
Process P0:
repeat

flag[0]:=true;
while(flag[1]){};

CS
flag[0]:=false;

RS
forever

flag[1]:=false;
Process P1:
repeat

flag[1]:=true;
while(flag[0]){};

CS
flag[1]:=false;

RS
forever

Algorithm II uses a shared variable (boolean flag[2]), which is initially
assigned as follows: flag [0] = flag [1] = false. That is, flag [i] = true
implies that Pi ready to enter its critical section. Algorithm II:

Satisfies mutual exclusion
But not progress (i.e., interleaving flag[1]:=true and flag[0]:=true means
neither can enter CS)

Two-Process Solution to the Critical-Section
Problem --- Algorithm II

March 08 15

Two-Process Solution to the Critical-Section
Problem --- Peterson’s Solution
flag[0],flag[1]:=false
turn := 0;
Process P0:
repeat

flag[0]:=true;
// 0 wants in

turn:= 1;
// 0 gives a chance to 1

while(flag[1]&turn=1){};
CS

flag[0]:=false;
// 0 is done

RS
forever

Process P1:
repeat

flag[1]:=true;
// 1 wants in

turn:=0;
// 1 gives a chance to 0

while(flag[0]&turn=0){};
CS

flag[1]:=false;
// 1 is done

RS
forever

Algorithm III proved to be correct. Turn can only be 0 or 1 even if both
flags are set to true

March 08 16

Activity

Prove that Peterson’s Solution is correct, i.e.
Mutual exclusion is preserved
The progress requirement is satisfied
The bounded-waiting requirement is met

March 08 17

Solution to the CS Problem using Locks

do{
acquire lock

CS
release lock

RS
}while(true);

Critical section is
protected by
locks

March 08 18

Synchronization Hardware

Peterson’s algorithm works only for a pair of processes. How
about a mutual execution among three or more threads?
It would be more efficient to block processes that are
waiting (just as if they had requested I/O)

This suggests implementing the permission/waiting function in the OS

Hardware solution makes programming task easier
Hardware solutions:

Disable interrupts
Special hardware instructions

((h/w implementation of these instructions is beyond the scope of this
course and can be found in books on computer architecture))

March 08 19

Hardware Solution 1: Disable Interrupts

Process Pi :
repeat

disable interrupts
critical section

enable interrupts
remainder section

forever

Disable interrupts even time interrupts (while a shared variable is being
modified), thus not allowing preemption.

Malicious user program may hog CPU forever.
Generally, not a practical solution for user programs. But could be used
inside an OS

On a uniprocessor, mutual exclusion is preserved: while in CS, nothing
else can run
On a multiprocessor: mutual exclusion is not achieved

Interrupts are “per-CPU”; it is time consuming to disable interrupts on all
processors

March 08 20

Hardware Solution 2: Special Hardware
Instructions

Many CPUs today provide hardware instructions to read,
modify, and write a word atomically. Some common
instructions with this capability include:

TAS—Test-And-Set (Motorola 68000)
CAS—Compare-And-Swap (IBM 370 and M68K)
XCHG—eXCHanGe or simply Swap (x86)

The idea is to be able to read the contents of a variable
(memory location), test it, and set it to something else.
This is done all in one execution cycle

Hence not interruptible (i.e., atomic operation)

March 08 21

Hardware Solution 2: Special Hardware
Instructions (cont.)

Normally, the memory system restricts access to any
particular memory word to one CPU at a time
Useful extension:

machine instructions that perform actions atomically on the same
memory location (ex: testing and writing)

The execution of such an instruction is mutually exclusive
on that location (even with multiple CPUs)
These instructions can be used to provide mutual
exclusion

but need more complex algorithms for satisfying the requirements
of progress and bounded waiting

March 08 22

The Test-and-Set Instruction

Test-and-Set expressed in “C”:

Non Interruptible (atomic)!
One instruction reads then writes the same memory
location

boolean TestAndSet(boolean *target)
{
boolean rv = *target;
*target = true;
return rv;

}

March 08 23

Test-and-Set Instruction (cont.)

An algorithm that uses TestAndSet for Mutual Exclusion:

Process Pi initializes the shared variable lock to false
Only the first Pi that sets lock enters CS

do{
while(TestAndSet(&lock))

; // do nothing
CS
lock=false;
RS

}while(true)

March 08 24

Test-and-Set Instruction (cont.)

Mutual exclusion is assured: if Pi enters CS, the other
processes are busy waiting
Satisfies progress requirement
When Pi exits CS, the selection of the next Pj to enter
CS is arbitrary
Does not satisfy bounded waiting (it is a race!!!)

March 08 25

Swap Instruction

Some processors (ex: Pentium) provide an atomic
Swap(a,b) instruction that swaps the content of a and b
Executed atomically

void Swap(boolean *a, boolean *b)
{
boolean tmp = *a;
*a = *b;
*b=tmp;

}

March 08 26

Using Swap for Mutual Exclusion

Shared variable lock is
initialized to false
Each Pi has a local variable
key
The only Pi that can enter CS
is the one which finds
lock=false
This Pi excludes all other Pj by
setting lock to true
Same as test-and-set

do{
key=true;
while(key == true)

Swap(&lock,&key);
CS
lock=false;
RS

}while(true);

March 08 27

Semaphores

Solutions based on machine instructions such as test
and set are complicated for application programmers
to use

E.g, SetAndTest algorithm does not satisfy all the
requirements to solve the critical-section problem

Starvation is possible.
See Fig 6.8 in the textbook for a (complicated) solution

To overcome this problem, some operating systems
provide a synchronization tool called semaphores

March 08 28

Semaphores (cont.)

A semaphore S is an integer variable
that, apart from initialization, can
only be accessed through 2 atomic
and mutually exclusive operations:

wait(S)
signal(S)

Types of semaphores
Counting semaphore – ranges over
unrestricted domain
Binary semaphore (also called mutex
locks) – ranges only between 0 and 1

Require disciplined use by
programmers

wait(S) {
while (S<=0)
; //no-op

S--;
}

signal(S){
S++;

}

March 08 29

Atomicity in Semaphores

The test-and-
decrement sequence
in wait must be
atomic, but not the
loop
Signal is atomic
No two processes can
be allowed to execute
atomic sections
simultaneously

wait(S):

S <= 0

atomic

S - -

F

T

March 08 30

Semaphore usage

Using binary semaphores for CS problem for multiple
processes

For n processes sharing a semaphore mutex initialized to 1
Then only one process is allowed into CS (mutual exclusion)

do{
wait(mutex);
CS
signal(mutex);
RS

}while(true);

[Process Pi]

March 08 31

do{
wait(mutex);
CS
signal(mutex);
RS

}while(true);

do{
wait(mutex);
CS
signal(mutex);
RS

}while(true);

Initialize mutex to 1

Binary Semaphores in Action

[Process Pi] [Process Pj]

March 08 32

Semaphore usage (cont.)

Using a counting semaphore for resource allocation
to control access to a resource consisting of a finite number of
instances
semaphore S is initialized to the number of resources available
to use a resource instance: perform wait()

when the count goes to zero, all resource instances are in use and
the process has to wait

to release a resource instance: perform signal()

March 08 33

Semaphore usage (cont.)

Assume P1 and P2 are running concurrently
Using a binary semaphore to ensure that statement S1
in process P1 is executed before S2 in P2

By sharing a semaphore S initialized to 0 between P1 and P2

Process P1:
S1;
signal(S);

Process P2:
wait(S);
S2;

March 08 34

Semaphore Implementation

Spinlock semaphores
previous semaphore definitions require a process to “spin” while
waiting for the lock (busy waiting)
is preferred when locks are expected to be held for short times to
avoid context switch overhead
continual looping is a problem in a real multiprogramming system

Solution
modify the definition of the wait() and signal() semaphore
operations
Uses a waiting queue for each semaphore

Rather than engaging in a busy waiting, the process can block itself
and enters the semaphore waiting queue
A blocked process should be returned to the ready queue when
another process executes the signal()

March 08 35

Semaphore Implementation (cont.)

Semaphore S
waiting

Signal(S) wait(S)

March 08 36

Semaphore Implementation (cont.)

typedef struct {
int value;
struct process *list;

}semaphore;

wait(semaphore *S){
S->value--;
if (S->value < 0) {

add this process to S->list;
block(); //suspend the process

}
}

March 08 37

Semaphore Implementation (cont.)

signal(semaphore *S){
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P); // resume execution of P

}
}

March 08 38

Deadlock and Starvation

An implementation of a semaphore with a waiting queue may result in:
Deadlock: two or more processes are waiting indefinitely for an
event that can be caused only by one of the waiting processes

Let S and Q be two semaphores initialized to 1

Starvation: indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended

If we add or remove processes from the list associated with a
semaphore in LIFO manner

P0:
wait(S);
wait(Q);
…
signal(S);
signal(Q);

P1:
wait(Q);
wait(S);
…
signal(Q);
signal(S);

March 08 39

Examples of Classic Synchronization Problems

Classic synchronization problems
Bounded-Buffer Problem
Readers-Writers Problem
Dining-Philosophers Problem

Commonly used to test and illustrate the power of a
newly proposed synchronization (concurrency control)
scheme

March 08 40

Bounded-Buffer Problem

We have n buffers. Each buffer is capable of holding ONE item
Shared data: semaphore full, empty, mutex;
Initially: full = 0, empty = n, mutex = 1

do {
…
produce an item in nextp
…

wait(empty);
wait(mutex);
…

add nextp to buffer
…
signal(mutex);
signal(full);

} while (1);

do {
wait(full)
wait(mutex);
…
remove an item from buffer to
nextc
…
signal(mutex);
signal(empty);
…

consume the item in nextc
…

} while (1);

[producer][consumer]

March 08 41

Readers-Writers Problem

A database is shared among several concurrent processes
Readers: processes that want to read the database
Writers: processes that want to update the database

If two readers access it simultaneously, no adverse effect would result
But, a writer should have exclusive access to avoid difficulties that
may arise if a writer and another process access the database
simultaneously
Several variations exist of this problem (all have priorities):

The first readers-writers problem: no reader should wait unless a writer
has already obtained permission to use the shared object
The first readers-writers problem: if a writer is waiting, no new readers

may start reading

May result in starvation

March 08 42

Readers-Writers Problem (cont.)

Solution to the first
readers-writers problem:

Shared data: semaphore
mutex, wrt; int readcount;
Initialization: mutex = 1,
wrt = 1, readcount = 0

do{
wait(wrt);
…
//writing is performed
…
signal(wrt);

}whie(true)

do{
wait(mutex);
readcount++;
if (readcount == 1) // first reader

wait(wrt);
signal(mutex);

…
//reading is performed
…

wait(mutex);
readcount--;
if (readcount == 0) //last reader

signal(wrt);
signal(mutex);

}while(true)

[Writer]

[Reader]

March 08 43

Dining-Philosophers Problem

Five philosophers are sitting
around a circular table
Each one is either thinking,
eating or waiting
There is a single chopstick
between each pair of
philosophers
If a philosopher gets hungry,
he tries to pick up the
chopsticks on either side of
him

The philosopher picks up only one chopstick in a single operation
Analog: need to allocate several resources among several processes in
deadlock-free and starvation-free manner

March 08 44

Dining-Philosophers Problem (cont.)

Shared data:
semaphore
chopstick[5];
Initially all values are 1

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])
…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
…
think
…

} while (1);

Simple solution
Guarantees that no
neighbors eat
simultaneously
Might cause deadlock
Might cause starvation

[Philosopher i]

March 08 45

Dining-Philosophers Problem (cont.)

Deadlock-free solutions
Allow at most four philosophers to be sitting simultaneously at
the table
Allow a philosopher to pickup chopsticks only if both are
available (and to be performed atomically as a critical section)
Use an asymmetric solution:

Odd philosopher picks up left chopstick and then right chopstick
Even philosopher picks up right chopstick and then left chopstick

A deadlock-free does not necessarily eliminate
starvation

March 08 46

Incorrect Use of Semaphores

Can result in timing errors that are difficult to detect
Example

a process interchanges the order of wait and signal operations

several processes may be executing in their critical section
simultaneously, violating the mutual exclusion requirement

Solution
Monitors

signal(mutex);
CS

wait(mutex);
RS

March 08 47

Monitors

A monitor is a programming language construct that controls
access to shared data

Synchronization code added by compiler, enforced at runtime
Why is this an advantage?

A monitor is a module that encapsulates
Shared data structures
Procedures that operate on the shared data structures
Synchronization between concurrent procedure invocations

A monitor guarantees mutual exclusion
Only one thread can execute any monitor procedure at any time (the
thread is “in the monitor”)
If a second thread invokes a monitor procedure when a first thread is
already executing one, it blocks

So the monitor has to have a wait queue…
If a thread within a monitor blocks, another one can enter

March 08 48

Monitors

monitor monitor-name {
// shared variable declarations
procedure P1 (…) {
. . .

}
procedure P2 (…) {
. . .
}
procedure Pn (…) {
. . .

}
initialization code (….) {
. . .

}
}

List of processes
waiting to

enter the monitor

public operations
can be called from

outside the monitor.
Only one process
can be active at

any moment.

Ensure mutual exclusion

March 08 49

Example

March 08 50

Monitors (cont.)

Condition variables (CVs)
-- allow a process to wait
inside the monitor, e.g.
condition x, y;
The only operations
allowed on a CV is wait
and signal

x.wait() suspend a process
x.signal() resume a process
waiting on x; If no process
is suspended, signal
operation has no effect

March 08 51

Deadlock-Free Solution for Dining-Philosophers Problem
Using Monitors

Impose a restriction that a philosopher picks up
chopsticks only if both are available

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i);
void putdown(int i);
void test(int i);
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

do {
dp.pickup(i);
…
eat
…

dp.putdown (i);
…
think
…

} while (1);

[Philosopher i]

March 08 52

Deadlock-Free Solution for Dining-Philosophers Problem
Using Monitors (cont.)

void test(int i) {
if ((state[(i + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}

March 08 53

Monitor Implementation Using Semaphores

Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

Each external procedure F will be replaced by
wait(mutex);

…
body of F ;

…
if (next-count > 0)

signal(next)
else

signal(mutex);

Mutual exclusion within a monitor is ensured
Next, we consider how condition variables are implemented…

March 08 54

Monitor Implementation

For each condition variable x, we have:
semaphore x-sem; // (initially = 0)
int x-count = 0;

The operation x.wait can be
implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

The operation x.signal can
be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}

March 08 55

Monitor Implementation: Process-Resumption Order

Conditional-wait construct:
x.wait(c);

c – integer expression evaluated
when the wait operation is
executed
value of c (a priority number)
stored with the name of the
process that is suspended
when x.signal() is executed,
process with smallest associated
priority number is resumed next

monitor ResourceAllocator{
boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy=true;
}
void release() {

busy=false;
x.signal();

}
initialization_code(){

busy=false;
}

}
March 08 56

Problems with Monitors

Check two conditions to establish correctness of
system:

User processes must always make their calls on the monitor in
a correct sequence
Must ensure that an uncooperative process does not ignore the
mutual-exclusion gateway provided by the monitor, and try to
access the shared resource directly, without using the access
protocols

March 08 57

Solaris 2 Synchronization

Implements a variety of locks to support multitasking,
multithreading (including real-time threads), and
multiprocessing
Uses adaptive mutexes for efficiency when protecting
data from short code segments
Uses condition variables and readers-writers locks when
longer sections of code need access to data
Uses turnstiles (a queue structure containing threads
blocked on a lock) to order the list of threads waiting to
acquire either an adaptive mutex or reader-writer lock

March 08 58

Windows 2000 Synchronization

Uses interrupt masks to protect access to global
resources on uniprocessor systems
Uses spinlocks on multiprocessor systems

Also provides dispatcher objects which may be used as
mutexes and semaphores
Dispatcher objects may also provide events
An event acts much like a condition variable

March 08 59

Synchronization Primitives — Summary

monitors
message passing

remote procedure calls
sockets

semaphores

load/store
interrupt

disable/enable
test-and-set

hardware

low level

high level

SHARED MEMORY NO SHARED MEMORY

March 08 60

End of Chapter 6

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and
G. Gagne. Addison Wesley, 2005

