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Process Synchronization

Chapter 6: 

Presented By: Dr. El-Sayed M. El-Alfy

Note: Most of the slides are compiled from the 
textbook and its complementary resources
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Objectives/Outline

Objectives
Introduce the critical-section 
problem whose solutions can 
be used to ensure the 
consistency of shared data
Present both software and 
hardware solutions 
Introduce the concept of 
atomic transaction 
Describe mechanisms to 
ensure atomicity

Outline
Background
The Critical-Section Problem
Peterson’s Solution
Synchronization Hardware
Semaphores
Classic Problems of 
Synchronization
Monitors
Synchronization Examples 
Atomic Transactions
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Background 

Cooperating processes are dependent processes that can affect or
be affected by each other.
Reasons for cooperating processes:

Information sharing, modularity, computation speed-up, convenience
Concurrent access to shared data may result in data inconsistency 
(race condition).

Maintaining data consistency requires synchronization mechanisms to 
ensure the orderly execution of cooperating processes 
Synchronization requires some form of communication

In order to cooperate, processes must be able to:
Communicate with one another - Passing information between two or 
more processes
Synchronize their actions - Coordinating access to shared resources

Hardware (e.g., printers, drives), Software (e.g., shared code), Files (e.g., 
data), Variables (e.g., shared memory locations)
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Background (cont.)

Just like shuffling cards, the instructions of two 
processes are interleaved arbitrarily
For cooperating processes, the order of some 
instructions is irrelevant. However, certain instruction 
combinations must be prevented 
For example:
Process A Process B concurrent access

A = 1; B = 2; does not matter

A = B + 1; B = B * 2; important!
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Background (cont.): A Concurrency example

time Person A Person B
3:00     Look in fridge. Out of milk
3:05     Leave for store.
3:10     Arrive at store. Look in fridge. Out of milk
3:15     Buy milk. Leave for store. 
3:20     Leave the store. Arrive at store.
3:25     Arrive home, put milk away.       Buy milk.
3:30 Leave the store. 
3:35 Arrive home. OH! OH!

Having too much milk isn't a big deal, but in 
terms of data access there is a problem

New milk/data may overwrite the old data
What about wasted resources? - too much milk
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Background (cont.): Producer-Consumer w 
Bounded Buffer

Producer process
while (true) {

while (counter == BUFFER_SIZE)
; /* do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++; 

}

Consumer process
while (true) {

while (counter == 0)
; /* do nothing */

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

}

Although the producer and consumer routines are correct separately, they may 
not function correctly when executed concurrently

For example: if count = 5 initially and both the producer and consumer are 
running concurrently, then count can be either 4, 5, or 6. 
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Producer-Consumer w Bounded Buffer (cont.)

The statement “count++” may 
be implemented in machine 
language as:

register1 = counter
register1 = register1 + 1
counter = register1

The statement “count--” may 
be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

If both the producer and 
consumer attempt to update 
the buffer concurrently, the 
assembly language 
statements may get 
interleaved

Interleaving depends upon 
how the producer and 
consumer processes are 
scheduled
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Producer-Consumer w Bounded Buffer (cont.)

Assume counter is initially 5. One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)
consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)
producer: counter = register1 (counter = 6)
consumer: counter = register2 (counter = 4)

The value of count may be either 4 or 6, where the correct result 
should be 5
Hence, count++ and count-- must be performed atomically

Atomic operation means an operation that completes in its entirety 
without interruption
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The Critical-Section Problem 

n processes all competing to use some shared data
Each process has a code segment, called critical section, in 
which the shared data may be changed

E.g. changing common variables, writing a file, etc

Problem – ensure that when one process is executing in its 
critical section, no other process is allowed to execute in 
its critical section
There is no problem with processes concurrently being in 
critical sections for different shared resources!
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The Critical-Section Problem (cont.)

We want to execute critical sections atomically
Treating these as atomic operations is done to ensure that cooperating 
processes execute correctly

Otherwise part of a critical section might be done then another process 
could do its critical section and then the first could finish

In the example, we had two people/processes buying milk using the 
same technique 
It's also possible for processes with different critical sections to access 
the same resource
Regardless, only one process can be in a critical section accessing a 
given resource at a time

A critical section exists because of a shared resource.  As there may be 
many shared resources, a process can have different critical sections for 
various resources
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The Critical-Section Problem (cont.)

General structure of a process
do {

entry section
critical section (CS)

exit section
remainder section

} while (true);

March 08 12

The Critical-Section Problem (cont.)

A solution to the critical-section problem MUST satisfy:
Mutual Exclusion: At any time, at most one process can be 
executing critical section (CS) code
Progress: If no process is in its CS and there are one or more 
processes that wish to enter their CS,  it must be possible for those 
processes to negotiate who will proceed next into CS

No deadlock
no process in its remainder section can participate in this decision

Bounded Waiting: After a process P has made a request to enter its 
CS, there is a limit on the number of times that the other processes 
are allowed to enter their CS, before P’s request is granted 

Deterministic algorithm, otherwise the process could suffer from
starvation
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Two-Process Solution to the Critical-Section 
Problem --- Algorithm I

turn := 0;
Process P0:
repeat
while(turn!=0){};

CS
turn:=1;

RS
forever

Process P1:
repeat
while(turn!=1){};

CS
turn:=0;

RS
forever

Algorithm I uses a shared variable (turn), which is 
initially assigned 0. Algorithms I:

Satisfies mutual exclusion
But not progress (i.e., processes MUST strictly alternate turns)
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flag[0]:=false;
Process P0:
repeat

flag[0]:=true;  
while(flag[1]){};

CS
flag[0]:=false;

RS
forever

flag[1]:=false;
Process P1:
repeat

flag[1]:=true;  
while(flag[0]){};

CS
flag[1]:=false;

RS
forever

Algorithm II uses a shared variable (boolean flag[2]), which is initially 
assigned as follows: flag [0] = flag [1] = false. That is, flag [i] = true 
implies that Pi ready to enter its critical section. Algorithm II:

Satisfies mutual exclusion
But not progress (i.e., interleaving flag[1]:=true and flag[0]:=true means 
neither can enter CS)

Two-Process Solution to the Critical-Section 
Problem --- Algorithm II
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Two-Process Solution to the Critical-Section 
Problem --- Peterson’s Solution
flag[0],flag[1]:=false
turn := 0;
Process P0:
repeat

flag[0]:=true;
// 0 wants in

turn:= 1; 
// 0 gives a chance to 1

while(flag[1]&turn=1){};
CS

flag[0]:=false;
// 0 is done

RS
forever

Process P1:
repeat

flag[1]:=true;
// 1 wants in 

turn:=0; 
// 1 gives a chance to 0

while(flag[0]&turn=0){};
CS

flag[1]:=false;
// 1 is done

RS
forever

Algorithm III proved to be correct. Turn can only be 0 or 1 even if both 
flags are set to true
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Activity

Prove that Peterson’s Solution is correct, i.e.
Mutual exclusion is preserved
The progress requirement is satisfied
The bounded-waiting requirement is met



March 08 17

Solution to the CS Problem using Locks

do{
acquire lock

CS
release lock

RS
}while(true);

Critical section is 
protected by 
locks
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Synchronization Hardware

Peterson’s algorithm works only for a pair of processes. How 
about a mutual execution among three or more threads?
It would be more efficient to block processes that are 
waiting  (just as if they had requested I/O)

This suggests implementing the permission/waiting function in the OS

Hardware solution makes programming task easier 
Hardware solutions:

Disable interrupts 
Special hardware instructions

((h/w implementation of these instructions is beyond the scope of this 
course and can be found in books on computer architecture))
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Hardware Solution 1: Disable Interrupts

Process Pi :
repeat

disable interrupts
critical section

enable interrupts
remainder section

forever

Disable interrupts even time interrupts (while a shared variable is being 
modified), thus not allowing preemption.

Malicious user program may hog CPU forever.
Generally, not a practical solution for user programs. But could be used 
inside an OS

On a uniprocessor, mutual exclusion is preserved: while in CS, nothing 
else can run 
On a multiprocessor: mutual exclusion is not achieved

Interrupts are “per-CPU”; it is time consuming to disable interrupts on all 
processors
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Hardware Solution 2: Special Hardware 
Instructions

Many CPUs today provide hardware instructions to read, 
modify, and write a word atomically. Some common 
instructions with this capability include:

TAS—Test-And-Set (Motorola 68000)
CAS—Compare-And-Swap (IBM 370 and M68K)
XCHG—eXCHanGe or simply Swap (x86)

The idea is to be able to read the contents of a variable 
(memory location), test it, and set it to something else. 
This is done all in one execution cycle

Hence not interruptible (i.e., atomic operation)
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Hardware Solution 2: Special Hardware 
Instructions (cont.)

Normally, the memory system restricts access to any 
particular memory word to one CPU at a time
Useful extension: 

machine instructions that perform actions atomically on the same 
memory location (ex: testing and writing) 

The execution of such an instruction is mutually exclusive
on that location (even with multiple CPUs) 
These instructions can be used to provide mutual 
exclusion 

but need more complex algorithms for satisfying the requirements
of progress and bounded waiting
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The Test-and-Set Instruction

Test-and-Set expressed in “C”: 

Non Interruptible (atomic)!
One instruction reads then writes the same memory
location

boolean TestAndSet(boolean *target)
{
boolean rv = *target;
*target = true;
return rv;

}
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Test-and-Set Instruction (cont.)

An algorithm that uses TestAndSet for Mutual Exclusion:

Process Pi initializes the shared variable lock to false
Only the first Pi that sets lock enters CS

do{
while(TestAndSet(&lock))

;   // do nothing
CS
lock=false;
RS

}while(true)

March 08 24

Test-and-Set Instruction (cont.)

Mutual exclusion is assured: if Pi enters CS, the other 
processes are busy waiting
Satisfies progress requirement
When Pi exits CS, the selection of the next Pj to enter 
CS is arbitrary
Does not satisfy bounded waiting ( it is a race!!!)
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Swap Instruction

Some processors (ex: Pentium) provide an atomic 
Swap(a,b) instruction that swaps the content of a and b
Executed atomically

void Swap(boolean *a, boolean *b)
{
boolean tmp = *a;
*a = *b;
*b=tmp;

}
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Using Swap for Mutual Exclusion

Shared variable lock is 
initialized to false
Each Pi has a local variable 
key
The only Pi that can enter CS 
is the one which finds 
lock=false
This Pi excludes all other Pj by 
setting lock to true
Same as test-and-set

do{
key=true;
while(key == true)     

Swap(&lock,&key);
CS
lock=false;
RS

}while(true);
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Semaphores

Solutions based on machine instructions such as test 
and set are complicated for application programmers 
to use

E.g, SetAndTest algorithm does not satisfy all the 
requirements to solve the critical-section problem

Starvation is possible.
See Fig 6.8 in the textbook for a (complicated) solution

To overcome this problem, some operating systems 
provide a synchronization tool called semaphores
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Semaphores (cont.)

A semaphore S is an integer variable 
that, apart from initialization, can 
only be accessed through 2 atomic 
and mutually exclusive operations:

wait(S)
signal(S)

Types of semaphores
Counting semaphore – ranges over 
unrestricted domain
Binary semaphore (also called mutex
locks) – ranges only between 0 and 1

Require disciplined use by 
programmers

wait(S) {
while (S<=0) 
;  //no-op

S--;  
}

signal(S){
S++; 

}
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Atomicity in Semaphores

The test-and-
decrement sequence 
in wait must be 
atomic, but not the 
loop
Signal is atomic 
No two processes can 
be allowed to execute 
atomic sections 
simultaneously

wait(S):

S <= 0

atomic

S - -

F

T
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Semaphore usage

Using binary semaphores for CS problem for multiple 
processes

For n processes sharing a semaphore mutex initialized to 1
Then only one process is allowed into CS (mutual exclusion)

do{
wait(mutex);
CS
signal(mutex);
RS

}while(true);

[ Process Pi ]
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do{         
wait(mutex);
CS
signal(mutex);
RS

}while(true);

do{
wait(mutex);
CS
signal(mutex);
RS

}while(true);

Initialize mutex to 1

Binary Semaphores in Action

[ Process Pi ] [ Process Pj ]
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Semaphore usage (cont.)

Using a counting semaphore for resource allocation
to control access to a resource consisting of a finite number of
instances
semaphore S is initialized to the number of resources available
to use a resource instance: perform wait()

when the count goes to zero, all resource instances are in use and 
the process has to wait

to release a resource instance: perform signal()



March 08 33

Semaphore usage (cont.)

Assume P1 and P2 are running concurrently
Using a binary semaphore to ensure that statement S1 
in process P1 is executed before S2 in P2

By sharing a semaphore S initialized to 0 between P1 and P2 

Process P1:
S1;
signal(S);

Process P2:
wait(S);
S2;
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Semaphore Implementation

Spinlock semaphores
previous semaphore definitions require a process to “spin” while 
waiting for the lock (busy waiting)
is preferred when locks are expected to be held for short times to 
avoid context switch overhead
continual looping is a problem in a real multiprogramming system

Solution 
modify the definition of the wait() and signal() semaphore 
operations
Uses a waiting queue for each semaphore

Rather than engaging in a busy waiting, the process can block itself 
and enters the semaphore waiting queue
A blocked process should be returned to the ready queue when 
another process executes the signal()
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Semaphore Implementation (cont.)

Semaphore S
waiting 

Signal(S) wait(S)
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Semaphore Implementation (cont.)

typedef struct {
int value;
struct process *list;

}semaphore;

wait(semaphore *S){
S->value--;
if (S->value < 0) { 

add this process to S->list;
block(); //suspend the process

}
}
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Semaphore Implementation (cont.)

signal(semaphore *S){ 
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P); // resume execution of P

}
}
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Deadlock and Starvation

An implementation of a semaphore with a waiting queue may result in:
Deadlock: two or more processes are waiting indefinitely for an 
event that can be caused only by one of the waiting processes

Let S and Q be two semaphores initialized to 1

Starvation: indefinite blocking.  A process may never be removed 
from the semaphore queue in which it is suspended

If we add or remove processes from the list associated with a 
semaphore in LIFO manner

P0:
wait(S);
wait(Q);
…
signal(S);
signal(Q);

P1:
wait(Q);
wait(S);
…
signal(Q);
signal(S);
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Examples of Classic Synchronization Problems 

Classic synchronization problems
Bounded-Buffer Problem
Readers-Writers Problem
Dining-Philosophers Problem

Commonly used to test and illustrate the power of a 
newly proposed synchronization (concurrency control) 
scheme
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Bounded-Buffer Problem

We have n  buffers. Each buffer is capable of holding ONE item
Shared data: semaphore full, empty, mutex;
Initially: full = 0, empty = n, mutex = 1

do { 
…
produce an item in nextp
…

wait(empty);
wait(mutex);
…

add nextp to buffer
…
signal(mutex);
signal(full);

} while (1);

do { 
wait(full)
wait(mutex);
…
remove an item from buffer to
nextc
…
signal(mutex);
signal(empty);
…

consume the item in nextc
…

} while (1);

[ producer ][ consumer ]
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Readers-Writers Problem

A database is shared among several concurrent processes 
Readers: processes that want to read the database
Writers: processes that want to update the database

If two readers access it simultaneously, no adverse effect would result 
But, a writer should have exclusive access to avoid difficulties that 
may arise if a writer and another process access the database 
simultaneously
Several variations exist of this problem (all have priorities):

The first readers-writers problem: no reader should wait unless a writer 
has already obtained permission to use the shared object
The first readers-writers problem: if a writer is waiting, no new readers 

may start reading

May result in starvation 
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Readers-Writers Problem (cont.)

Solution to the first 
readers-writers problem:

Shared data: semaphore 
mutex, wrt; int readcount;
Initialization: mutex = 1, 
wrt = 1, readcount = 0

do{
wait(wrt);
…
//writing is performed
…
signal(wrt);

}whie(true)

do{
wait(mutex);
readcount++;
if (readcount == 1) // first reader

wait(wrt);
signal(mutex);

…
//reading is performed
…

wait(mutex);
readcount--;
if (readcount == 0) //last reader

signal(wrt);
signal(mutex);

}while(true)

[ Writer ]

[ Reader ]
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Dining-Philosophers Problem

Five philosophers are sitting 
around a circular table 
Each one is either thinking, 
eating or waiting
There is a single chopstick 
between each pair of 
philosophers
If a philosopher gets hungry, 
he tries to pick up the 
chopsticks on either side of 
him

The philosopher picks up only one chopstick in a single operation
Analog: need to allocate several resources among several processes in 
deadlock-free and starvation-free manner

March 08 44

Dining-Philosophers Problem (cont.)

Shared data: 
semaphore 
chopstick[5];
Initially all values are 1

do {
wait(chopstick[i])
wait(chopstick[(i+1) % 5])
…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
…
think
…

} while (1);

Simple solution 
Guarantees that no 
neighbors eat 
simultaneously
Might cause deadlock
Might cause starvation

[Philosopher i ]
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Dining-Philosophers Problem (cont.)

Deadlock-free solutions
Allow at most four philosophers to be sitting simultaneously at 
the table 
Allow a philosopher to pickup chopsticks only if both are 
available (and to be performed atomically as a critical section)
Use an asymmetric solution: 

Odd philosopher picks up left chopstick and then right chopstick
Even philosopher picks up right chopstick and then left chopstick

A deadlock-free does not necessarily eliminate 
starvation
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Incorrect Use of Semaphores

Can result in timing errors that are difficult to detect
Example 

a process interchanges the order of wait and signal operations

several processes may be executing in their critical section 
simultaneously, violating the mutual exclusion requirement

Solution
Monitors

signal(mutex);
CS

wait(mutex);
RS
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Monitors

A monitor is a programming language construct that controls 
access to shared data

Synchronization code added by compiler, enforced at runtime
Why is this an advantage?

A monitor is a module that encapsulates
Shared data structures
Procedures that operate on the shared data structures
Synchronization between concurrent procedure invocations

A monitor guarantees mutual exclusion
Only one thread can execute any monitor procedure at any time (the 
thread is “in the monitor”)
If a second thread invokes a monitor procedure when a first thread is 
already executing one, it blocks

So the monitor has to have a wait queue…
If a thread within a monitor blocks, another one can enter
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Monitors

monitor monitor-name {
// shared variable declarations
procedure P1 (…) {
. . .

}
procedure P2 (…) {
. . .
} 
procedure Pn (…) {
. . .

} 
initialization code (….) {
. . .

} 
}

List of processes
waiting to

enter the monitor

public operations 
can be called from

outside the monitor.
Only one process 
can be active at

any moment.

Ensure mutual exclusion
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Example
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Monitors (cont.)

Condition variables (CVs) 
-- allow a process to wait 
inside the monitor, e.g.
condition x, y;
The only operations 
allowed on a CV is wait 
and signal

x.wait() suspend a process
x.signal() resume a process 
waiting on x; If no process 
is suspended, signal
operation has no effect
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Deadlock-Free Solution for Dining-Philosophers Problem 
Using Monitors

Impose a restriction that a philosopher picks up 
chopsticks only if both are available

monitor dp
{

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i); 
void putdown(int i); 
void test(int i);
void init() {

for (int i = 0; i < 5; i++)
state[i] = thinking;

}
}

do {
dp.pickup(i);
…
eat
…

dp.putdown (i);
…
think
…

} while (1);

[Philosopher i ]
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Deadlock-Free Solution for Dining-Philosophers Problem 
Using Monitors (cont.)

void test(int i) {
if ( (state[(i + 4) % 5] != eating) &&

(state[i] == hungry) &&
(state[(i + 1) % 5] != eating)) {

state[i] = eating;
self[i].signal();

}
}

void pickup(int i) {
state[i] = hungry;
test[i];
if (state[i] != eating)

self[i].wait();
}

void putdown(int i) {
state[i] = thinking;
// test left and right neighbors
test((i+4) % 5);
test((i+1) % 5);

}
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Monitor Implementation Using Semaphores

Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

Each external procedure F will be replaced by
wait(mutex);

…
body of F ;

…
if (next-count > 0)

signal(next)
else 

signal(mutex);

Mutual exclusion within a monitor is ensured
Next, we consider how condition variables are implemented…
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Monitor Implementation

For each condition variable x, we  have:
semaphore x-sem; // (initially  = 0)
int x-count = 0;

The operation x.wait can be 
implemented as:

x-count++;
if (next-count > 0)

signal(next);
else

signal(mutex);
wait(x-sem);
x-count--;

The operation x.signal can 
be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

}
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Monitor Implementation: Process-Resumption Order

Conditional-wait construct: 
x.wait(c);

c – integer expression evaluated 
when the wait operation is 
executed
value of c (a priority number) 
stored with the name of the 
process that is suspended
when x.signal() is executed, 
process with smallest associated 
priority number is resumed next

monitor ResourceAllocator{      
boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy=true;
}
void release() {

busy=false;
x.signal();

}
initialization_code(){

busy=false;
}

}
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Problems with Monitors

Check two conditions to establish correctness of 
system: 

User processes must always make their calls on the monitor in 
a correct sequence
Must ensure that an uncooperative process does not ignore the 
mutual-exclusion gateway provided by the monitor, and try to 
access the shared resource directly, without using the access 
protocols
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Solaris 2 Synchronization

Implements a variety of locks to support multitasking, 
multithreading (including real-time threads), and 
multiprocessing
Uses adaptive mutexes for efficiency when protecting 
data from short code segments
Uses condition variables and readers-writers locks when 
longer sections of code need access to data
Uses turnstiles (a queue structure containing threads 
blocked on a lock) to order the list of threads waiting to 
acquire either an adaptive mutex or reader-writer lock
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Windows 2000 Synchronization

Uses interrupt masks to protect access to global 
resources on uniprocessor systems
Uses spinlocks on multiprocessor systems

Also provides dispatcher objects which may be used as 
mutexes and semaphores
Dispatcher objects may also provide events
An event acts much like a condition variable
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Synchronization Primitives — Summary

monitors
message passing

remote procedure calls
sockets

semaphores

load/store
interrupt 

disable/enable
test-and-set

hardware

low level

high level

SHARED MEMORY NO SHARED MEMORY
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End of Chapter 6

Operating System Concepts, 7th Ed. A. Siblerschatz, P. Galvin, and 
G. Gagne. Addison Wesley,  2005 


