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Abstract: In this paper, on the basis of studying 
the limitations of the basic rough set model, we 
present Tolerance Information Systems, which is 
based on a family set of tolerance relations 
between objects when given a set of tolerance 
relations. The model inherits most of the 
characteristics of the basic model of rough set; and 
they also have a better effect of approximation 
classification. Based on this model, we propose 
two algorithms that will give us one near-optimal 
attributes reduct in memory and process efficient 
way, the first one is a single processor algorithm 
which uses concepts from relation and extension 
matrices. Based on the first algorithm, its parallel 
processor version is proposed, the parallel version 
is far more efficient.  
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1. Introduction 
 
Rough set theory has some advantages over other 
similar formal tools, and has been used widely in 

some areas [1, 2, 3, 4], such as knowledge 
acquisition, machine learning, knowledge 
representation. But there are some limitations in 
its application. Firstly, when we could only do 
partial classification, the classification done by the 
rough set model is completely correct and certain; 
it could not give a classification with a kind of 
controllable misclassification. However, in a real 
time situation, this kind of classification could 
give better understanding and processing of the 
analyzed data. Secondly, another limitation of 
approximation space is from the view point which 
the universe U of the considering data objects are 
all known, and the derived result from that model 
is only usable for that object set. However, in real 
life situations, we obviously need to extend the 
result derived from the limited object set to a 
larger data set. To solve this problem better, we 
here present one extended rough set models; that 
is based on a family set of tolerance relations 
between objects when given a set of tolerance 
relations. 

2. Tolerance Information Systems 
Based on the definition of approximation space K 

= (U, R, τ)[4, 5, 6], we first could give the 
definition of a rather restricted special tolerance 

information system. In the process of mapping τ 
from the corresponding information system, we 



could get rid of the restriction, to extend it to 
general tolerance information system.  

 
Definition 1 One special tolerance information 

system is a triple S = (U, A, τ), where U = {x1, x2,, 
…, xn } is known as the non-empty finite objects 
set, which called Universe. A is the non-empty 
finite set of primitive attributes ai (i=1, 2, …,k). 

The mapping τ is the mapping from powerset(A)-
{∅, {a1}, {a2}, …, {ak}} into the family set TS(S) 
of tolerance   relations on universe U. It satisfies 
the following characteristics: Every primitive 

attribute ai ∈ A is a total function, which is 
defined on Xi ⊆ U (i=1, 2, …, k), i.e. ai : Xi → Vai, 
where Vai is the value domain of the primitive 

attribute ai ; for x ∈ U - Xi , the function ai have no 
definition on it. Every primitive attribute ai ∈ A is 
corresponding to a tolerance relation I{ai} defined 

on Xi ⊆ U (i=1, 2,…,k), i.e. To any attributes 
subset B ∈ powerset(A)-{∅, {a1}, {a2}, …, 
{ak}}, there exists one related definition on 

universe U which is a binary relation τ(B)= IB ∈ 
TR(S), regarded as the tolerance relation of the 
attribute subset B, where it satisfies the following 
properties: 
 
a) Monotony of the differences between 

information vectors: ∀ x1, x2, y1, y2 ∈ INF(B), 
if ((y2-y1) ∪ (y1-y2)) ⊆ ((x2-x1) ∪ (x1-x2)), then 
(y1IBy2) → (x1 IB x2); 

 
b) Decreasing monotony of the tolerance 

attributes set: ∀ B ⊆ C, and ∀ x, y ∈ INF(C), 
we have ((x | C) IC (y | C)) → ((x | B) IB (y | 
B)). 

In tolerance information system S = (U, A, τ), we 
have boarded the limitation to every primitive 
attribute. On one side we allow some primitive 
attributes of some objects to have missing values, 
on the other side we boarded the equivalence 
relations from the basic information system into 
the tolerance relations. Thus, it becomes closer to 
the original description of primitive data table. 

But, because we want to generate a tolerance 
relation of all objects on universe U based on one 

attributes subset B ⊆ A, so when study the specific 
definition of the mapping τ, we must give the 
processing strategies of missing attribute values. 
Note, the reason why we ask for the tolerance 
relation to be defined on the universe U, is its 
prime purpose is to do reduction of attributes. For 
the 2nd item of the definition above, sometimes 
we need to extend the definition of tolerance 
relation Iai from objects set Xi into the universe U, 
then it is noted as I'ai. This requires us to give the 
proper strategies to process the missing attribute 
values.  

The monotony of the information vectors 
difference is referred to two information vectors 
on attributes set B. If two information vectors with 
less attribute values difference are non-tolerant, 
and these attribute values difference is contained 
in another two information vectors with more 
attribute values difference. Then the information 
vectors with more attribute values difference are 
also non-tolerant. The monotony of the tolerance 
attribute set in fact implies that every attribute has 
the same kind of importance in assumption 
information system; it is a rather restricted 
limitation. The monotony of the tolerance 
attributes set in the special tolerance information 
system actually pays more attention to the 
equivalent importance of all attributes. In some 
real world implementations, this criterion may not 
be satisfied, and we will now define the general 
tolerance information system below. 

 

Definition 2 One general tolerance information 

system is a triple S=(U, A, τ), where U={x1, x2,… , 
xn} is the non-empty finite objects set known as 
Universe. A is the non-empty finite set of 
primitive attributes ai ( i= 1, 2,…, k). The 

mapping τ is the mapping from powerset (A) -{∅ 
,{a1} ,{a2} ,… ,{ ak}} into the family set TS(S) of 
tolerance relations on universe U. It satisfies the 
following characteristics: Every primitive attribute 



ai∈ A is a total function, which is defined on Xi ⊆ 
U (i=1, 2, …, k), i.e. ai: Xi → Vai, where Vai is the 
value domain of the primitive attribute ai ; for x ∈ 
U- Xi, the function ai has no definition on it. 

Every primitive attribute ai∈ A is corresponds to a 
tolerance relation Iai defined on X⊆U (i=1, 2, …,  
k). To any attributes subset B ∈ Powerset(A)-{ ∅ 
, {a1} , {a2} ,…, {ak}}, there exists one related 
definition on universe U which is a binary relation 

τ(B)=IB ∈ TR(S), regarded as the tolerance 
relation of the attribute subset B, where it satisfies 
the following properties: 
 
(1) Monotony of the differences between 

information vectors: ∀ x1, x2, y1, y2 ∈ INF(B), 
if ((y2-y1) ∪ (y1-y2)) ⊆ ((x2-x1) ∪ (x1-x2)), 
then (y1 IB y2) → (x1 IB x2);  

 
(2) Increasing monotony of the tolerance 

attributes set: ∀ B ⊆ C, and ∀ x, y ∈ INF(C), 
we have (x, y) ∈ IB → (x, y) ∈ IC, and (x, y) 
¬ ∈ IB → (x, y) ¬ ∈ IC. 

 
The increasing monotony of tolerance attributes 
set means that to every two objects x and y, if they 
are tolerant (or non-tolerant) on a smaller 
attributes set, then they are also tolerant (non-
tolerant) on the attributes set which contains that 
attributes set. Generally in real world 
implementations, this criterion can be satisfied. 
But note that the size of this kind of small 
attributes set has certain requirements; this 
attributes set must contain the minimum attributes 
set which is required by the tolerance of the two 
objects.  Furthermore, note that in special 
tolerance information systems, it asks for the 
decreasing monotony of tolerance attributes set, 
but here this definition asks for the increasing 
monotony of tolerance attributes set. We must 
point out that in the special tolerance information 
system, satisfying decreasing monotony of 
tolerance attributes set will give rise to the 
required increasing monotony of tolerance 

attributes set, that is ∀ B ⊆ C and ∀ x, y ∈ 
INF(C), (x, y) ≠ ∈ IB → (x, y) ≠ ∈ IC. We use this 
monotony to solve the problems of reduction of 
attributes. In later sections when we refer to 
attributes monotony, it just meant the decreasing 
monotony of the particular tolerance attributes set. 
To define the specific tolerance relation between 
objects normally requires extra domain 
knowledge. For example, in one of the pattern 
recognition problems, having 3 major 
characteristics {a, b, c} and 5 minor 
characteristics {d, e, f, g, h} to describe 
recognized objects. The tolerance of two objects 
on the characteristics set A={a, b, c, d, e, f, g, h} 
is defined as: if there are at least 2 major 
characteristics same, or one major characteristic 
and at least 4 minor characteristics same, then 
these two objects are tolerant. Let is be that known 
object x1 and x2 are tolerant on attributes set B={a, 
d, e, f, g}, if get rid of attribute a, then object x1 
and x2 are non-tolerant on attributes set {d, e, f, g}.  

3. Description of the Algorithm Based 
on Extension and Relation Matrices 

In this section, we will give out the algorithm 
which solves a near optimal relative tolerance 
reduct. It has three characteristics; first of all it 
uses tolerance information systems proposed in 
the above session; secondly it uses the concepts of 
positive and negative examples (negative 
extension matrix) from extension matrix [7, 8, 9]; 
at last it uses relation matrix for memory storage 
and processing. 

3.1 The algorithm to solve the near optimal 
relative tolerance reduct 

Given a tolerance decision information system S = 

(U, A, {d}, τ), we propose the algorithm below to 
solve the near optimal relative tolerance reduct R 
of attribute set A. 

Algorithm 3.1.1 the algorithm to solve the near 



optimal relative tolerance reduct based on 
tolerance extension matrix. 

Input: A given tolerance decision information 

system S = (U, A, {d}, τ); 

Output: one near optimal relative tolerance reduct 
R of attribute set A; 

Begin 

 Divide all objects (U) into positive and 
negative examples, according decision attribute (d) 
from the given tolerance decision information 

system S = (U, A, {d}, τ); 

 R = ∅; 

 Construct all Negative Extension 
Matrices from all positive examples; 

Store all Negative Extension Matrices in 
memory with the structure of Relational Extension 
Matrices. 

 Reduct Matrix M= ∩  all Negative 

Extension Matrix stored in Relation Matrices; 

(Negative Extension Matrix 1 ∩  Negative 

Extension Matrix 2 ∩  Negative Extension Matrix 

2 ∩  Negative Extension Matrix 3 ∩ Negative 

Extension Matrix n) 

 R = Remaining attributes that still 
contain value “1” in M; 

 Output Reduct R; 

End 
The above are the steps of the algorithm. Now we 
give out an example using the above algorithm. 

3.2 An example of the above algorithm. 

Example below uses the decision table provided 
by paper [6] (table 3.1) to explain the 
process/steps of algorithm 3.1.1. 

 

 Height Weight haiR Eyes D 

1 Short Light Dark Blue 1 

2 Tall Heavy Dark Blue 1 

3 Tall Heavy Dark Brown 1 

4 Tall Heavy Blond Brown 1 

5 Short Light Blond Brown 1 

6 Tall Heavy Red Blue 2 

7 Short Light Blond Blue 2 

8 Tall Heavy Blond Blue 2 

Table 3.1 The decision table of a 

tolerance information system S 

We could now construct the tolerance decision 
information system based on the decision table 

above. It is  S = (U, A, {d}, τ), where U = 
{1,2,3,4,5,6,7,8}; condition attribute set A = 
{H,W,R,E}, where attributes are Height, Weight, 
haiR, Eyes, they all generate the equivalence 
relation on universe U; decision attribute is d. 

Mapping τ Is defined as: ∀B ⊆ A, where 
card(B)≥1, if ∀x,y ∈ U on attribute subset B have 
values different on one attribute, then these two 
objects are non-tolerant, otherwise they are 
tolerant. 

We then divide U into positive and negative 
examples according to the decision attribute d. We 
have positive examples {1,2,3,4,5} and negative 
examples {6,7,8}. So we now ready to construct 
negative extension matrices for the positives 

examples and derive reduct matrix M from all 



negative extension matrices. 
 
Step 1: 
Negative Extension Matrix 1: 
 
 

Height Weight haiR Eyes 
1 Short Light Dark Void 
2 Void Void Dark Void 
3 Void Void Dark Brown 
4 Void Void Blond Brown 
5 Short Light Blond Brown 
Constructed for Positive Example 1: 
[ Tall Heavy Red Blue ] 
 
Step 2: 
Note, please here onwards, we will denote ‘Void’ 
as ‘*’. 
 
Negative Extension Matrix 2: 
 

Height Weight haiR Eyes 
1 * * Dark * 
2 Tall Heavy Dark * 
3 Tall Heavy Dark Brown 
4 Tall Heavy * Brown 
5 * * * Brown 
Constructed for Positive Example 2: 
[ Short Light Blond Blue ] 
 
Step 3: 
Negative Extension Matrix 3: 
 

Height Weight haiR Eyes 
1 Short Light Dark * 
2 * * Dark * 
3 * * Dark Brown 
4 * * * Brown 
5 * Light * Brown 
Constructed for Positive Example 3: 
[ Tall Heavy Blond Blue ] 
 
Step 4: 

Negative Extension Matrix 1 ∩  Negative 

Extension Matrix 2: 
 
 

Height Weight haiR Eyes 

1 * * Dark * 
2 * * Dark * 
3 * * Dark Brown 
4 * * * Brown 
5 * * * Brown 
 
 
Step 5: 

Negative Extension Matrix 1 ∩  Negative 

Extension Matrix 2 ∩  Negative Extension Matrix 

3: 
 

Height Weight haiR Eyes 
1 * * Dark * 
2 * * Dark * 
3 * * Dark Brown 
4 * * * Brown 
5 * * * Brown 
 
The above five steps illustrate how negative 
extension matrices are constructed. We will not 
use the original extension matrix format here, 
because of three reasons: 
 
1) The extension matrix is memory hungry even 

with values of “void”, they still have been 
allocated memory for in such data structure; 
in our proposed relational extension matrix, 
we could use ‘0’ to represent “void”. 

 
2) Our aim of construct extension matrices here 

is to study the relationship between 
objects/attributes, not their attribute values, so 
the exact values are not important to us, thus 
we could use ‘1’ to represent a relationship 
exists in our relational extension matrix. 

 
3) It takes a lot of time to perform value 

comparisons during the ∩  operations. With 

the introduction of relational extension 

matrix, ∩  operations are just much easy to 

perform and natural to digital computers. 



 
Thus we could repeat the above five steps using 
our relational extension matrices below. It is 
memory and process efficient due to the uses of 
‘1’ / ‘0’ only in the relational extension matrix, it 
is very efficient to store in the memory (integer 
only) and efficient in processing as well (easy to 
construct and quick to compare). 
 
Step 1: 
Relational Extension Matrix 1: 
 Height Weight Hair Eyes 
1 1 1 1 0 
2 0 0 1 0 
3 0 0 1 1 
4 0 0 1 1 
5 1 1 1 1 
Constructed for Positive Example 1: 
[ Tall Heavy Red Blue ] 
 
Step 2: 
Relational Extension Matrix 2: 
 Height Weight Hair Eyes 
1 0 0 1 0 
2 1 1 1 0 
3 1 1 1 1 
4 1 1 0 1 
5 0 0 0 1 
Constructed for Positive Example 2: 
[ Short Light Blond Blue ] 
 
Step 3: 
Relational Extension Matrix 3: 
 Height Weight Hair Eyes 
1 1 1 1 0 
2 0 0 1 0 
3 0 0 1 1 
4 0 0 0 1 
5 0 1 0 1 
Constructed for Positive Example 3: 
[ Tall Heavy Blond Blue ] 
 
Step 4: 

Relational Extension Matrix 1 ∩  Extension 

Matrix 2: 
 Height Weight Hair Eyes 
1 0 0 1 0 

2 0 0 1 0 
3 0 0 1 1 
4 0 0 0 1 
5 0 0 0 1 
 
Step 5: 

Relational Extension Matrix 1 ∩ Relational 

Extension Matrix 2 ∩ Relational Extension Matrix 

3: 
 Height Weight Hair Eyes 
1 0 0 1 0 
2 0 0 1 0 
3 0 0 1 1 
4 0 0 0 1 
5 0 0 0 1 
 
This above relational extension matrix is the 

Reduct Matrix M we illustrated in algorithm 3.1. 
Take out the remaining attributes whose values 
are “1”s, then we got two attributes: Hair and 
Eyes. 

We could tell that our near optimal reduct (Hair, 
Eyes) is in this case the optimal reduct that could 

be solved [10]. Please note that our algorithm may 
not always give the optimal reduct, but it will 
certainly contain one optimal reduct, so we always 
will have a near optimal reduct. Please note for 
space reason we have used a small table, so in this 
example, our tolerance relations are the same as 
equivalence relations. For uses of tolerance 
relations in tolerance information systems to solve 
reducts, refer to reference [11]. 

 

4. The Proposed Parallel Algorithm  

In algorithm 3.1.1 discussed in Section 3.1, we 
can see that each ai value in a positive example is 
matched with all the ai values of the negative 
examples. Our proposed algorithm exploits this 
property to do the same computation in parallel in 

a mesh of m×n processors. In the mesh, a 
processor in row i and column j is denoted as pi,j, 

for 0≤i<m and for 0≤j<n. 



The algorithm starts by partitioning U  
row wise into u and v, where u consists of all the 
positive examples and v consists of all the 
negative examples of U. Let |u| and |v| be the 
number of examples in u and v respectively. Also, 
let ui,j represent the value of ai in the positive 
example i, and vi,j represent the value of aj in the 

negative example i. 
The algorithm starts by evenly 

distributing the values in u into m×n partitions. 
Each partition is labelled as gi,j  where 0≤i<m 
and 0≤j<n. Each gi,j consists of us,t, where 

( )
m
u

is
m
u

i ×+<≤× 1
 and 

( ) .1
n
kjt

n
kj ×+<≤×

 

Similarly v is partitioned in to n 
partitions. Each partition is labelled as hi, where 

0≤i<n. Each hi, consists of vj,i, for 

( )
n
kit

n
ki ×+<≤× 1

 and for vj <≤0 . 

The algorithm then transfers the values in 
gi,j  and hj  to pi,j. Then each pr,c will 

compute: 

                        (1) jsji
s

ji vuw ,,, ⊗=

Where 
( )

m
u

ri
m
u

r ×+<≤× 1
, 

( )
n
kcj

n
kc ×+<≤× 1

, and 

vs <≤0 .  if , and 

, if . 

jijsji uvu ,,, =⊗ jsji vu ,, =

nullvu jsji =⊗ ,, jsji vu ,, ≠

At last, each pr,c will compute: 

     
1

,
2
,

1
,

0
,, ... −= v

jijijijiji wwwwZ IIII         (2)  

Where 
( )

m
u

ri
m
u

r ×+<≤× 1
 and 

( )
n
kcj

n
kc ×+<≤× 1

. 

 

5 Cost Analysis 

The cost of the proposed parallel algorithm 
consists of communication cost and computation 
cost, which we will denote as Ccomm and 
Ccomp respectively [9]. The communication cost 

is the time taken to transfer the g and the h values 
from processor p0,0 to processor pm−1,n−1, 

while the computation cost is the time taken to 
compute the w and z values by any one of the 

processors, say . 1,1 −− nmp

The communication cost is further 
divided into Cstartup cost  and  Cdata cost. The 
Cstartup is the cost of packing the data to be 

transferred at the source and then unpacking it at 
the destination. The Cdata is the cost of 

transferring one attribute value from one processor 
to another. 

The communication cost of the proposed 
parallel algorithm is the cost of transferring the g  
and  the  h  values  from  p0,0   to  pm−1,n−1. 

The cost of transferring the g values is 

)2()( −+×××+ nmt
n
k

m
u

t datastartup
 and the cost of 

transferring the h values is 

)2()( −+×××+ nmt
n
kvt datastartup

. Therefore, the 
total communication cost is 

)2())(2( −+×+××+×= nmv
m
u

t
n
ktC datastartupcomm

     (3) 
Computation cost of the proposed 

parallel algorithm is the cost of computing the w 
and the z values. The cost of computing w values 

is 
v

nm
ku
×

×
×

 The cost of computing the z values is 

)1( −×
×

×
v

nm
ku

. Therefore, the total computation 
cost is 

     nm
vku

Ccomp ×

−×××
=

)12(

        (4) 
Hence, the total cost of the proposed 

parallel algorithm is: 

         commCcompCpC +=
        (5) 

Computation/Communication Ratio: The 

communication complexity is )( u
m
kO ×  and 

the computation complexity is )( u
n
v

m
kO ×× . 



The ratio of 

commt
compt

 shows that as |U| increases, 

the effect of the communication cost decreases, 
thus the performance of the parallel algorithms 
increases. 
 

Speedup: Speed up is the measure of how 
much faster the parallel algorithm is compared to 
the fastest single processor algorithm known to 
solve the same problem. The cost of the single 
processor algorithm discussed in Section 3.1 is 

)12( −×××= vkuCs . Hence, for a given nm×  

mesh, the speedup, which is 
p

s

C
C

will be closer to 

m×n as |U|  increases. 
 

6 Conclusion 

In short, through this paper, on the basis of 
studying the limitations of the basic rough set 
model, we present an extended rough set model 
that is based on a family set of tolerance relations 
between objects when given a set of tolerance 
relations. This model inherits most of the 
characteristics of the basic model of rough set; and 
it also has a better effect of approximation 
classification. And the concepts of general and 
specific tolerance information systems are 
presented, so they can be further used to illustrate 
the relationships between objects in various of real 
applications.  
In the extended rough set model based on the 
tolerance relations proposed here, according to 
normal primitive data tables, we could set up a 
corresponding tolerance information system. On 
the tolerance information system, we studied the 
uses of the negative and positive examples 
concepts from Extension Matrix; from there we 
proposed an algorithm that gave us one near-
optimal attribute reduct based on both extension 

and relation matrices (Relational Extension 
Matrix) that is memory saving. Based on this 
algorithm we further developed a parallel version. 
Due to the nature of the relational extension 
matrices used in our algorithm 3.1, the parallel 
version is very efficient. 
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