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ABSTRACT
Optimally organizing multidimensional data is NP-hard.
The little work that has been done in optimising multi-
dimensional data was limited to uniform data distribution
and rarely considered the probability of use of each query.
And those who did consider the probability of use of each
query, they were limited to either partial match query or
range query. This work shows that by combining heuristics
and combinatorial algorithms, near-optimal solutions can
be found which organize multidimensional data (uniform
or skewed) on which join queries are efficiently performed.
The experimental results of the proposed algorithms show
that performance gains of up to 716% are achieved, when
compared with standard schemes. Moreover, the proposed
algorithms are not very sensitive to the change in the query
distribution. The result show that if the query probabilities
change by up to 80% of their original values, the original
storage organizations remain near optimal.
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1 Introduction

The time taken to answer a query is mainly measured
by the number of disk accesses performed to retrieve the
records described by the query. If the described records of
a query are scattered in many blocks, the cost of the query
will be high. But if the described records are clustered in
smaller number of blocks the cost of the query will be lower.

The join operation is frequently used and is one of the
most time consuming and data-intensive operations in rela-
tional query processing. It is used to combine tuples from
two or more relations based on a specified condition known
as join-condition. Tuples of the input relations are com-
bined when they satisfy the specified join-condition. The
result of a join operation is a relation which has some or all
of the attributes of the input relations.

To lower the average query cost, related records must be
clustered in fewer blocks. To cluster records described by
a query, each record in a file is placed using the values of
one or more of its attributes. The attributes that determine
the placement of records in a file are called theorganizing
attributes. A file whose records are placed using one or-
ganizing attribute has a uni-dimensional file organization.
B-trees [11]is an example of uni-dimensional file organiza-
tion.

A file whose records are placed using more than one or-
ganizing attribute has amultidimensional file organization.
Some examples of multidimensional file organization are
X-tree, BV-tree, hP-tree and many other [2].

With an increasing number of applications such as com-
puter aided design, VLSI, robotics, geometric or geographic
systems, medical imaging, environmental protection, data
warehouse, visual perception and text retrieval systems,
searching using several attributes is more common than us-
ing one attribute.

Few researchers studied techniques of minimising query
costs when using multidimensional file structures, but
nearly all of them were limited to uniform data distribu-
tions [5–8]. To our knowledge this is the first study which
introduces techniques of optimally clustering records in a
multidimensional file structure when the data distributionis
skewed.

This paper has 5 sections. Section 2 gives introduction
to multidimensional files. The proposed join algorithm to-
gether with the heuristic and combinatorial algorithms used
in the optimisation of physical database design are dis-
cussed in Section 3. Results and analysis of the proposed
algorithms are discussed in Section 4. Section 5 is the con-
clusion.

2 Nested and Balanced Grid (BANG) File

The Multidimensional file (MDF) that we used in testing
the proposed solutions is the BANG file [3]. A relation,Ri,



which hasn organizing attributes,Ai,0, Ai,1, . . . , Ai,n−1,
(organized as a BANG file) can be envisioned as an
n-dimensional data space where each dimension corre-
sponds to the domain of an attribute in the relation. The
domain-spaceof the relation is the cartesian product of
Di,0,Di,1, . . . ,Di,n−1, whereDi,j is the domain ofAi,j .
A record is represented as a point and a block as ann-
dimensional partition within the domain-space.

BANG uses hashing scheme to place its records. In hash-
ing schemes, the address of a disk block where a record
resides is determined by a hash key calculated for that
record. If the file on which the record resides has one or-
ganizing attribute, a hash function is applied to the value
of that attribute. But if the file has many organizing at-
tributes, then as many hash functions are used. Each or-
ganizing attribute has a hash function which maps a value
into bit strings. For example, in a relation,Ri, with or-
ganizing attributesAi,0, Ai,1, . . . Ai,n−1, n hash functions,
hi,0, hi,1, . . . hi,n−1, are employed.hi,j , maps eachAi,j

value to a bit string,bi,j,0bi,j,1 . . . bi,j,ci,j−1, whereci,j is
the minimum number of bits needed to represent any values
of Ai,j . The hash key for a record is constructed by tak-
ing di,j bits, where0 ≤ di,j < ci,j , from the bit string of
hi,j and combining them in a specific order. This order is
maintained by a structure known as achoice vector. In short
a choice vector specifies the order by which the hashed bit
strings are combined to form a hash key of a record. Each
element of a choice vector is a bit position and is denoted as
bi,j,k, where0 ≤ k < ci,j .

3 The Proposed Join Algorithm

The proposed join algorithm have two main modules, a
selection-moduleand amatching-module. define

3.1 The Selection-module

The selection-module exploits the partitioning and clus-
tering properties of the BANG file in selecting the next set
of join-compatible partitions (partitions whose join attribute
values overlap). For example, assume the following query,
q1, which usesR0 andR1 of Figure 1 as input relations.

SELECT A0,0, A0,1, A1,1

FROM R0, R1 (q1)
WHERE A0,0 = A1,0

In processingq1, there is no need to matchingP0,3 and
P1,12 for join. They don’t share tuples which can satisfy
the join-condition because their join-attribute values don’t
overlap. The join-attribute values ofP0,3 are between 0
and 25 and that ofP1,12 are between 75 and 100. But
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Figure 1. P0,0 and P1,0 are join-compatible
while P0,0 and P1,12 are not.

P0,3 andP1,0 are join-compatible partitions, because their
join-attribute values overlap. Both are between 0 and 25.
P0,3 is also join-compatible toP1,1, P1,2 andP1,3. In fact
each ofP0,0, P0,1, P0,2 and P0,3 are join-compatible to
P1,0, P1,1, P1,2 and P1,3. So the selection-module iden-
tifies such join-compatible partitions and passes them to the
matching-module. The matching-module matches the tu-
ples of these partitions for join. Once the join of the current
join-compatible set is completed, the algorithm again starts
selecting the next join-compatible set. In case the ofq1, the
next join-compatible set contain partitionsP0,4, P0,5, P0,6

andP0,7 with P1,4, P1,5, P1,6 andP1,7.
Before the start of the two modules, the join algorithms

compute the number of join-compatible sets. This is done
by logically dividing the join-attribute domain into a num-
ber of equalintervals. Then partitions are mapped into these
intervals. Partitions mapping to the same interval form a
set called awave. The selection-module uses intervals and
waves to select the next join-compatible partitions.

3.1.1 Intervals

Before performing selection or matching, the join-attribute
domain is logically dividing into a number of equalinter-
vals. The number of intervals can be computed from the
choice vector. In a choice vector, the number of elements
which correspond to a join-attributeAi,j is di,j , then the
number of intervals alongDi,j is 2di,j . The size of each in-
terval is equal to the size of join-attribute edge of the small-
est partition in the relation. In case ofq1, the domain of the
join-attribute is partitioned into 4 equal intervals as shown
in Figure 1. This is because the size of the smallest join-
attribute edge in the relation is a fourth of the join-attribute
domain size, which is 100.

For now us assume that the number of intervals in the
input relations are equal, and each partition be within one
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interval. Later in this section we will remove these restric-
tions.

Intervals are labeled. Intervals corresponding toRi are
labeled asIi,0, Ii,1, Ii,2 and so on. The number of inter-
vals can be computed from the choice vector. In a choice
vector, the number of elements which correspond to a join-
attributeAi,j is di,j , then the number of intervals alongDi,j

is 2di,j . Attribute values inIi,j+1 are higher than those in
Ii,j . For example, in Figure 1 the intervals ofR0 are labeled
asI0,0, I0,1, I0,2, andI0,3. I0,0 covers attribute values be-
tween 0 and 24 inclusive,I0,1 covers values between 25
and 49 inclusive,I0,2 covers values between 50 and 74 in-
clusive, andI0,3 covers values between 75 and 99 inclusive.

3.1.2 Waves

Partitions of a relation whose join-attribute edge overlap-
ping the same interval belongs to the same join-compatible
set. For example, partitions overlappingIi,k are put in one
set and partitions overlappingIi,k+1 are put in a separate
set. We call such a set awave.

Waves are labeled asWi,0,Wi,1,Wi,2 and so on. There
is one-to-one mapping between waves and intervals.Wi,k

contains only partitions overlappingIi,k. This makes the
number of waves to be equal to the number of intervals.

The join-attribute edge of a partition can span more than
one interval. Such a partition can become a member of more
than one wave. Some times all the members of a one wave
are also members of another wave. This happens when
some partitions of a wave span more than one interval.

When the number of join-attributes in a relation is more
than one, the number of intervals (waves) created is a mul-
tiple of all the individual join-attribute intervals.

3.2 The Matching-module

The matching-module is performed in a nested loop. In
the outer loop, the partitions of one of the two waves are
read and their tuples are put into a hash table. In the inner
loop, the partitions of the other wave are read and their tu-
ples probed into the hash table for join with the tuples of the
outer loop.

3.3 Wave Size and Choice Vector

Choice vectors significantly affect the cost of a join
query. For example, assume the join of two relationsR0

andR1 of Figure 1 withA0,0 = A1,0 as a join-condition.
Let us assume that bothA0,0 andA1,0 have the same do-
main ranging between 0 and 100, and the first-wave always
belongs toA0,0 and the second-wave toA1,0. Let the buffer
size allocated for the first-wave be 2 and for the second-
wave be 1 and for the result be 1. Then the cost of each

join-compatible wave is as follows:4 +
⌈

4
2

⌉

× 4 = 12.
Since we have 4 join-compatible waves, the join ofR0 and
R1 will cost 4 × 12 = 48 disk accesses. But ifA1,0 of R1

was partitioned into 8 intervals instead into 4 (using a differ-
ent choice vector) andA1,1 was partitioned into 2 intervals
instead into 4, then the cost would have been 32. This is
because the corresponding waves are smaller.

So allocating more elements of a choice vector to join-
attributes results in smaller size waves. The problem now
is, given a number of join queries and their probabilities, to
find optimal choice vectors which results in minimal aver-
age cost. Finding optimal choice vectors for arbitrary query
distribution is NP-hard [9]. Hence we will use heuristic al-
gorithms and combinatorial optimisation techniques to find
optimal or near optimal choice vectors.

3.4 Combinatorial Optimisation Techniques

To attempt to find good choice vector, we used heuris-
tic and combinatorial optimisation algorithms. These tech-
niques are not guaranteed to find optimal choice vector to
any problem. In the subsequent sections we use the term
minimalor optimisedto indicate a solution which is the re-
sult produced by one or more of these techniques. These
minimal solutions are typically local minima or local op-
tima.

The optimisation solutions that we used can be described
in the following way. Consider a set,̂k, of n non-negative
integers,ki, upon which cost function,f , is defined as [4]

C = f(k̂)

wherek̂ = {k0, k1, . . . , kn−1}. The main objective here is
to find k̂min, such thatf(k̂min) < f(k̂), for all members of
k̂. The constraint

∑n−1
i=0 ki = k

must be satisfied.
Relating this to a choice vector,k is the number of ele-

ments in the choice vector,ki is the number of bits allocated
to theith attribute,̂k is a bit allocation, and̂kmin is the op-
timal bit allocation.

3.4.1 Simulated Annealing

There are many heuristic and combinatorial optimisation
algorithms such algorithms are minimal marginal increase
and simulated annealing [1]. Nurmela in [10] found that
simulated annealing typically performed as well or better
than a number of other combinatorial optimisation methods.
He also found that simple genetic algorithms which did not
use problem specific knowledge did not perform as well as
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local search algorithms. Simulated annealing is a class of
optimisation algorithms based on Monte Carlo techniques.

The algorithm begins by selecting a random choice vec-
tor and computes the cost of the problem on hand using cost
functions, which are dependent on the choice vector. Then
in each iteration, the algorithm computes new choice vec-
tors and accepts the new choice vector as the basis for fur-
ther perturbations if it improves the cost or when acooling
functiondetermines that it be accepted. The cooling func-
tion is a monotonically decreasing function which specifies
the probability of accepting a choice vector which does not
improve the cost. In the early iteration the probability of
accepting a choice vector that does not improve the cost
function is high, but approaches to zero in the later stages.
There are a number of parameters which can be used to con-
trol the amount of computational resources used by the al-
gorithm. The algorithm terminates when the costs has not
improved after pre-specified number of iterations since the
last accepted choice vector.

3.4.2 Cost Functions

This section discusses the cost functions that we used to-
gether with simulated annealing to find optimal choice vec-
tors.

The average join query cost is:

CQ =
∑

q

Cq × pq (1)

wherepq is the probability ofq andQ is a set of join queries.
Cq is the cost of a single query. The cost of joining two join
compatible waves is:

CWk̄
= min(|Wi,k|, |Wj,k̄|) +

max
(

|Wi,k|, |Wj,k̄|
)

⌈

min(|Wi,k|, |Wj,k̄|)

B

⌉

(2)

WhereB is the buffer size.
Let the choice vector elements ofRi bedi out of which

di⋆ belong to the join attribute. Similarly let the choice vec-
tor elements ofRj bedj and that of the its join attribute be
dj⋆. The number of waves created inRi andRj is 2di and
2dj respectively. So on the average each wave ofRi will
contain2di−di⋆ and each wave ofRj will contain 2dj−dj⋆ .
Let δi = di − di⋆ andδj = dj − dj⋆. Hence Equation 2 can
be rewritten as:

CWk̄
= min(2δi , 2δj ) +

max(2δi , 2δj )

⌈

min(2δi , 2δj ))

B

⌉

(3)

The cost of a query is equal to the cost of its join compatible
joins and is represented as:

Cq =

2min(δi,δj)
−1

∑

k=0

CWk̄
(4)

By combining Equations 1, 4 and 3 we end up with:

CQ =
∑

q

pq

2min(δi,δj)
−1

∑

k=0

min(2δi , 2δj ) +

max(2δi , 2δj )

⌈

min(2δi , 2δj )

B

⌉

(5)

So by using simulated annealing together with Equa-
tion 5 optimised choice vectors can be found forRi and
Rj .

4 Results and Analysis

In this section we present three sets of experimental
results comparing the performance of the optimised and
cyclic choice vectors. In a cyclic choice vector equal num-
ber of bits are chosen from each organizing attribute and
they are arranged in a circular fashion.

The first set of results shows the performance of the op-
timised and the cyclic choice vectors on different data and
query distributions. The second set of results shows the ef-
fect of the number of attributes on the performance of both
choice vectors.

Query distributions change over time. A choice vector
optimised for one query distribution may not perform as
well if the query distribution changes. A solution, based
on simulated annealing and Equation 5, is calledstableif a
slight change in the query distribution doesn’t affect the op-
timality of the solution. The last set of results demonstrate
the stability of the optimised choice vector.

4.1 Environment

We implemented a BANG file with our extension of us-
ing a choice vector during partition splitting. In each ex-
periment we used randomly generated queries and assigned
each of them a randomly generated probability. Unless
specified, we used a page size of 1024 bytes, four integer
attributes per record and one million randomly generated
records per relation (BANG file). We ran all our experi-
ments on a SPARC station 20.

The data distributions used were uniform, clustered re-
gions, a linear correlation, and a non-linear correlation func-
tion (a sine wave). Examples of these are shown in Figure 2.
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Uniform Clustered Sinoid Linear

Figure 2. The four data distributions used in
generating the results.

We refer to them as uniform, clustered, linear and sinoid.
The number of intervals can be computed from the choice
vector. In a choice vector, the number of elements which
correspond to a join-attributeAi,j is di,j , then the number
of intervals alongDi,j is 2di,j ., respectively.

In the experiments, four sets of query distributions were
used. Query distributions in each set were generated ran-
domly using a fixed set of seeds. The seeds used for one
set were different from that of the other. In this paper, these
four sets of query distributions are referred to asΘ1, Θ2,
Θ3 andΘ4.

4.2 Effect of Data Distribution

The effect of using the optimised and cyclic choice vec-
tors on the average query cost using different data and query
distributions is shown in Tables 1 to 4. The first column
in each of these tables shows the query distribution used.
The second and the fourth columns correspond to the cyclic
choice vector and show the cost in number of disk page ac-
cesses (DPA) and in lapse time, respectively. Similarly, the
third and fifth columns show the costs corresponding to the
optimised choice vector. The improvement in the number of
DPA and time taken when using the optimised choice vec-
tor rather than the cyclic choice vector is shown in the final
two columns.

In all the experiments performed the optimised choice
vector performed better than the cyclic choice vector.
The improvement is lower when both input relations have
skewed data distributions. The more skewed the data dis-
tribution is, the more are the elements of the choice vector.
More elements in the choice vector causes more number of
waves hence less number of partition per wave which can
fit into the available memory.

4.3 Effect of Number of Attributes

As the number of attributes increases, the number of at-
tributes that are specified in few or no queries (nonsignif-
icant attributes) is likely to increase. As the ratio of the
nonsignificant to significant attributes increases, the perfor-
mance improvement of the optimised choice vector over the
cyclic choice vector decreases. This is because when the

Query DBA Time (sec) Improvement in
Dist. Cyl Opt Cyc Opt DPA Time

Θ1 154634 60093 1438 589 2.57 2.44
Θ2 151735 61208 1382 588 2.48 2.35
Θ3 160048 60128 1483 594 2.66 2.50
Θ4 162986 58960 1464 554 2.76 2.64

Table 1. Average query cost for a uniform data
distribution.

Query DBA Time (sec) Improvement in
Dist. Cyl Opt Cyc Opt DPA Time

Θ1 153329 62549 1397 572 2.45 2.41
Θ2 150170 60740 1381 573 2.47 2.41
Θ3 159020 60575 1351 529 2.62 2.55
Θ4 161434 58211 1402 517 2.77 2.71

Table 2. Average query cost for a clustered
data distribution.

Query DBA Time (sec) Improvement in
Dist. Cyl Opt Cyc Opt DPA Time

Θ1 51684 50073 477 468 1.03 1.02
Θ2 51462 49133 480 466 1.05 1.03
Θ3 61156 59429 558 552 1.03 1.01
Θ4 51756 48356 472 441 1.07 1.04

Table 3. Average query cost for a sinusoidal
data distribution.

Query DBA Time (sec) Improvement in
Dist. Cyl Opt Cyc Opt DPA Time

Θ1 52213 49131 482 459 1.06 1.05
Θ2 52040 48759 485 458 1.07 1.06
Θ3 55847 51415 490 449 1.09 1.09
Θ4 52477 48177 474 439 1.09 1.08

Table 4. Average query cost for a linear data
distribution.
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cyclic choice vector is used, peer-splitting based on the non
significant attributes increases. As a result, the performance
improvement achieved by using the optimised choice vec-
tor instead of the cyclic choice vector increases. Our exper-
imental results showed that, on the average, the gains were
1.05, 1.62, 2.62, and 7.16 when 2, 3, 4, and 8 attributes were
used respectively.

5 Conclusion

Our study shows that given a probability distribution of
join queries, an efficient physical database design can be
created by using simulated annealing and Equation 5. Un-
like previous approaches, our approach is not limited to a
uniform data distribution or to independently specified at-
tributes, and the precise nature of any non-uniformity does
not need to be known.

When compared to the cyclic choice vector, our results
show that the optimised choice vector produces more effi-
cient physical database designs, reducing the average query
cost by up to 716%.

The improvement gained by using an optimised choice
vector instead of the cyclic choice vector increases as the
number of attributes increases. This is because the elements
of the insignificant attributes in the cyclic choice vector is
higher.

There is no need to rearrange the optimised choice vector
whenever the query distribution changes by a small amount.
Our experiments show that the optimised choice vector built
for the current query distribution will remain almost as good
as the optimised choice vector built for a variation on the
current query distribution even when the query distribution
changes by 80%. There was a degradation of less than 5%
in performance.

We conclude that if the query distribution is known and a
file structure which evenly distributes records amongst disk
pages is used regardless of the data distribution, an opti-
mised choice vector produces an efficient physical database
design.
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