
March 29, 2008 ICS 541 1

Coping With System Failure

Chapter 17 of GUW

March 29, 2008 ICS 541 2

Objectives

To understand how data can be protected in the face of
system failure

Techniques for supporting the goal of resilience, that is, the
integrity of data when the system fails in some way.

March 29, 2008 ICS 541 3

- Lecture outline

Issues and Models for Resilient Operations

Logging

Undo Logging

Redo Logging

Undo/Redo Logging

Protecting Against Media Failures

March 29, 2008 ICS 541 4

- Issues and Models for Resilient Operations

Failure modes

Transactions

Correct execution of transactions

The primitive operations of transactions

March 29, 2008 ICS 541 5

-- Failure Modes

Erroneous data entry.
Example: Mistyping a value
Solution: Constraints

System failures
Example: Lost state of transaction. May be due power outrage.
Solution: logging

Media failure
Example: Bad sector in a disk or disk head crash
Solution: RAID, Archiving, and redundant copies

Catastrophic failure
Fire
Solution: Archiving and redundancy

March 29, 2008 ICS 541 6

-- Transactions

Is a unit of execution of DB
operations.

Atomic

Specified by Programmer

Transaction ends with a
COMMIT or ROLLBACK
commands

Assuring transactions are
executed correltly is the job
of transaction manager
which:

Issues signals to the log
manager

Concurrently executing
transactions do not intefere.

Query
processor

Trans.
Manager

Log
Manager

Buffer
Manager

Recovery
Manager

Log

Data

March 29, 2008 ICS 541 7

--- Correct execution of transactions

A fundamental assumption of a transaction is the correctness
principle, which is

If a transaction executes in the absence of any other transaction or
system error, and its starts with the DB in a consistent state, then the
DB is in a consistent state when the transaction ends.

TransactionConsistent
database

Consistent
database

• No other transaction
• No system error

March 29, 2008 ICS 541 8

--- The Primitive Operations of Transactions …

The three address spaces
that interact during a
transaction are:

The space of the disk blocks
holding the DB elements.

The memory space address
space that is managed by the
buffer manager

The local address space of
the transaction

RAM

DISK

March 29, 2008 ICS 541 9

… --- The Primitive Operations of Transactions …

RAM

DISK

March 29, 2008 ICS 541 10

… --- The Primitive Operations of Transactions …

Data DISK

T1 T2

Data
Buffer

Log
Buffer

RAM

Log DISK

March 29, 2008 ICS 541 11

--- The Primitive Operations of Transactions …

During a transaction, the operations that move data
between the above address spaces are:

INPUT(X): Copy the disk block containing X to memory
buffer.

READ(X,t): Copies element X to the transaction local variable
t.

WRITE(X,t): Copy the transaction variable t to DB element X
in a memory buffer.

OUTPUT(X): Copy the block containing X from its buffer to
disk.

March 29, 2008 ICS 541 12

--- The Primitive Operations of Transactions …

RAM

DISK

INPUT(A)

READ(A,t)WRITE(A,t)

OUTPUT(A)

March 29, 2008 ICS 541 13

-- Logging ...

As transaction executes, the log manager has the job of
recording in the log each important event.

Each event is represented as log record and saved into
a log file.

Log records from different transactions are interleaved
in the log file.

New log records are only appended at the end of the
log file.

March 29, 2008 ICS 541 14

… -- Logging

There are several forms of log record that are used
with each type of logging. These are:

<START T>: Transaction T has began.

<COMMIT T>: Transaction T has completed successfully.

<ABORT T>: Transaction T could not complete succesfully.

The changes of B must be rolled back.

March 29, 2008 ICS 541 15

--- Undo Logging

Used for recovery from failure
Beside the previously mentioned log records, an update
log record <T, X, v> is needed, where

T is transaction
X is the database element that was changed by T
v is a former value of X.

March 29, 2008 ICS 541 16

---- Undo Logging Rules

1. If transaction T modifies DB element X, then the log
record of the form <T, X, v> must be written to the
disk before the new value of X is written to the disk.

2. It a transaction commits, then the COMMIT log record
must be written disk only after all the database
elements changed by the transaction have being
written to disk, but as soon there after as possible.

March 29, 2008 ICS 541 17

---- Undo Logging: Example

Step Action t M-A M-B D-A D-B LOG

1 <START T>

2 READ(A,t) 8 8 8 8

3 t := t * 2 16 8 8 8

4 WRITE(A,t) 16 16 8 8 <T, A, 8>

5 READ(B,t) 8 16 8 8 8

6 t := t * 2 16 16 8 8 8

7 WRITE(B,t) 16 16 16 8 8 <T, B, 8>

8 FLUSH_LOG

9 OUTPUT(A) 16 16 16 16 8

10 OUTPUT(B) 16 16 16 16 16

11 <COMMIT T>

12 FLUSH_LOG

March 29, 2008 ICS 541 18

---- Recovery Using Undo Logging

Start the log from the end

If T is a transaction whose COMMIT record is available then do
nothing for T.

Otherwise, T is an incomplete transaction, or an aborted
transaction. The recovery manager must change the values of X
into v, incase X has been altered before the crash.

After making these changes, the recovery manager must right a
log record <ABORT T> for each incomplete transaction T, that was
not previously aborted.

March 29, 2008 ICS 541 19

---- Checkpointing with Undo Logging

As observed recovery requests the entire log be examined, which
is bad.

The solution: checkpoint

1. Stop accepting new transactions

2. Wait until all currently active transactions commit or abort and have
written a COMMIT or ABORT record on the log

3. Flush the log to disk

4. Write a log record <CKPT>, and flash the log again

5. Resume accepting transactions

With such Checkpointing, no need to recover transactions
executed prior to checkpoint.

March 29, 2008 ICS 541 20

---- Nonquiescent Checkpointing with Undo Logging

With nonquiescent no need to stop new transactions
during checkpointing, hence preferred.

Steps of nonquiescent checkpointing:

1. Write a log record <START CKPT (T1, T2, …, Tn)> and flush
the log. T1, T2, …, Tn are the active transactions

2. Wait until all of T1, T2, …, Tn commit or abort, but do not
prohibit other transactions from starting

3. When all of T1, T2, …, Tn have completed, write a log record
<END CKPT> and flush the log.

March 29, 2008 ICS 541 21

---- Recovery with Nonquiescent Checkpointing

Go back words starting from the end of the log

If <END CKPT> is encountered first go back until the last
<START CKPT>.

But if <START CKPT> is encountered first go until the one
before the last <START CKPT>.

March 29, 2008 ICS 541 22

--- Redo Logging

In redo logging the meaning of <T, X, w> is,
Transaction T wrote the new value w for DB element X.

Rule
Before modifying any DB element X on disk, it is necessary that
all log records pertaining to this modification of X, including
both the <T, X, w> and the <COMMIT T> log records, must
appear on disk.

March 29, 2008 ICS 541 23

---- Redo Logging: Example

Step Action t M-A M-B D-A D-B LOG

1 <START T>

2 READ(A,t) 8 8 8 8

3 t := t * 2 16 8 8 8

4 WRITE(A,t) 16 16 8 8 <T, A, 16>

5 READ(B,t) 8 16 8 8 8

6 t := t * 2 16 16 8 8 8

7 WRITE(B,t) 16 16 16 8 8 <T, B, 16>

8 <COMMIT T>

9 FLUSH_LOG 16 16 16 16 8

10 OUTPUT(A) 16 16 16 16 16

11 OUTPUT(B)

March 29, 2008 ICS 541 24

---- Recovery with Redo Logging

1. Identify the committed transactions.

2. Scan the log forward from the beginning. For each
log record <T, X, w> encountered.

a. If T is not a committed transaction, do nothing.

b. If T is committed, write v for DB element X.

3. For each incomplete transaction T, write an
<ABORT T> record to the log and flush the log.

March 29, 2008 ICS 541 25

---- Checkpoint with Redo Logging

Steps:
Write a log record <START CKPT (T1, T2, …, Tn)>, where T1,
T2, …, Tn are the currently active transactions, and flush the
log

Write to disk all DB elements that were written to buffers but
yet not to disk by transactions that had already committed
when the SATRT CKPT record was written to the log.

Write an <END CKPT> record to the log and flush the log.

March 29, 2008 ICS 541 26

--- Undo/Redo Logging

Except for the update record, the other log records are the same
as that of redo and undo loggings.

The update log record has 4 components:<T, X, v, w> where:
T is the transaction
X is the DB element
v is the old value of X
w is the new value of X

Rule:
Before modifying any DB element X on disk because of change made
by some transaction T, it is necessary that the update record <T, X, v,
w> appear on disk.

March 29, 2008 ICS 541 27

---- Undo/Redo Logging: Example

Step Action t M-A M-B D-A D-B LOG

10 <COMMIT T>

1 <START T>

2 READ(A,t) 8 8 8 8

3 t := t * 2 16 8 8 8

4 WRITE(A,t) 16 16 8 8 <T, A, 16>

5 READ(B,t) 8 16 8 8 8

6 t := t * 2 16 16 8 8 8

7 WRITE(B,t) 16 16 16 8 8 <T, B, 16>

8 FLUSH_LOG 16 16 16 16 8

9 OUTPUT(A) 16 16 16 16 16

11 OUTPUT(B)

March 29, 2008 ICS 541 28

---- Recovery with Undo/Redo Logging

1. Redo all committed transactions in the order earliest-
first

2. Undo all the incomplete transactions in the order
latest-first.

March 29, 2008 ICS 541 29

---- Checkpointing with Undo/Redo Logging

Steps:

Write a log record <START CKPT (T1, T2, …, Tn)>, where T1,
T2, …, Tn are the currently active transactions, and flush the
log.

Write to buffer all dirty buffers. Unlike redo logging we flush all
buffers not just those written by the committed transactions.

Write an <END CKPT> record to the log, and flush the log.

March 29, 2008 ICS 541 30

- Protecting Against Media Failure

To recover from media failure

Archive all the logs.

Make periodic backup (dump) of the whole database.

Recovery steps:

Restore the DB from the archive

Find the most recent full dump and reconstruct the DB from.
If there are later incremental dumps, modify the DB accordingly to
each, earliest first

Modify the DB using the surviving logs. Use the method of
recovery appropriate to the log method being used.

March 29, 2008 ICS 541 31

- Reference

Chapter 17 of GUW

March 29, 2008 ICS 541 32

END

