

Information Integration

Chapter 20

To have a shallow understanding of what a data warehouse and data mining are.

- Lecture outline

- Need for Information Integration (II)
- The Three most common approaches of II
- Problems of II
- OLAP
- Data Mining

- Need for Information Integration

- The Three Most Common Approaches of II

- Federated DBs
- Mediation
- Warehousing

-- Federated Databases

- The sources are independent
- One source can call on others to supply information
- Advantage:
 - Easy to build.
- Disadvantage:
 - For n data sources, n(n-1) pieces of code is needed

- Supports a collection of views that integrate several sources.
- Unlike Data warehouse, the views are not materialized.
- The mediator sends queries to the corresponding wrappers.
- The results come back and are combined at the mediator

-- Data Warehouses

- Data from several sources is extracted and combined into a global schema.
- The data is stored in the warehouse
- User updates to the WH is generally forbidden, since they are not reflected in the source.
- Three ways of maintaining DW.
 - Periodic construction
 - Periodic update
 - Immediate update

- Problems of Information Integration

- Data in various Databases while having the same meaning can be represented in many different ways.
 - Data type difference
 - A field can be represented as character in one and integer in the other
 - Values difference
 - The same concept can be represented by different constants: example: sex can be represented as F and M or as 0 and 1.
 - Semantic difference
 - A relation in one DB excludes some entities while the same relation in another DB includes the same entities.
 - Missing values
 - A certain attribute in a relation in one DB may be missing from the corresponding relation in the other DB.

- On-Line Analytical Processing (OLAP)

- What is OLAP
- OLAP Applications
- A Multidimensional View of OLAP Data
- Star Schema
- Data Cubes
- OLAP Queries

-- What is OLAP

- The activity of querying a DW for patterns or trends of importance for an organization.
- Involve highly complex queries that use one or more aggregations.
 - These queries are often termed OLAP or decision support system (DSS) queries.
- In contrast to OLTP queries, OLAP queries typically examine large number of data.
- Example:

<u>Shema</u>

Sales(serialNo, date, dealer, price)
Autos(serialNo, model, color)
Dealers(name, city, state, phone)

OLAP (DSS) query

SELECT state, AVG(price)
FROM Sales, Dealer
WHERE Sales.dealer = Dealers.name
AND date > '2001-01-04'
GROUP BY state;

-- A Multidimensional View of OLAP Data

- In typical OLAP applications there is a central relation called fact table.
- Fact table represents events or objects of interest such as sales.
- It helps to envision the records in a fact table as arranged in a multidimensional space (cube).

- A star schema has 2 types of tables
 - A fact table
 - Is the center of the star and is linked to other relations
 - It normally has several attributes that represent dimension and one or more dependent attributes that represent the properties of interest.
 - Dimension tables: Smaller tables which are referenced by the fact table.

Fact relation

sale	Product	Client	Amt
	p1	c1	12
	p2	c1	11
	p1	c3	50
	p2	c2	8

Two-dimensional cube

	с1	c2	c3
p1	12		50
p2	11	8	

... -- Data Cubes ...

Fact relation

sale	Product	Client	Date	Amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

3-dimensional cube

... -- Data Cubes ...

 In multidimensional data model together with measure values usually we store summarizing information (aggregates)

	с1	c2	c3	Sum
p1	56	4	50	110
p2	11	8		19
Sum	67	12	50	129

... -- Data Cubes

\longrightarrow Date \longrightarrow

... -- The Cube Operator ...

-- Aggregation Using Hierarchies ...

(customer c1 in Region A; customers c2, c3 in Region B)

-- OLAP Servers

- Relational OLAP (ROLAP)
 - Extended relational DBMS that maps operations on multidimensional data to standard relations operations.
 - Store all information, including fact tables, as relations
- Multidimensional OLAP (MOLAP)
 - Special purpose server that directly implements multidimensional data and operations
 - Store multidimensional datasets as arrays.

-- OLAP Queries: Roll Up

Summarizes data along dimension.

Roll up aggregation with respect to city

	Video	Camera	CD
Dammam	22	8	30
Riyadh	23	18	22

-- OLAP Queries: Drill Down ...

- Roll down, drill down: go from higher level summary to lower level summary or detailed data
 - For a particular product category, find the detailed sales data for each salesperson by date
 - Given total sales by state, we can ask for sales per city, or just sales by city for a selected state

24

-- Other OLAP Queries ...

- Slice and dice: select and project
 - Sales of video in USA over the last 6 months
 - Slicing and dicing reduce the number of dimensions
- Pivot: reorient cube
 - The result of pivoting is called a cross-tabulation
 - If we pivot the Sales cube on the Client and Product dimensions, we obtain a table for each client for each product value

... Other OLAP Queries

Pivoting can be combined with aggregation

sale	prodld	clientid	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

	с1	c2	c3	Sum
1	23	8	50	81
2	44	4		48
Sum	67	12	50	129

	с1	c2	с3	Sum
p1	56	4	50	110
p2	11	8		19
Sum	67	12	50	129

-- Cube Implementations

- Data cubes are implemented by materialized views
- A materialized view is the result of some query, which we chose to store its output table in the database.
- For the data cube, the views we would choose to materialize will typically be aggregations of the full data cube.
- Lattice of views are created for performance reasons

Lattice

- Data Mining

- Data mining: an introduction
- Goals of data mining
- Knowledge discovery during data mining
- Applications of data mining

-- Data Mining: An Introduction

- Data mining refers to the discovery of new information in terms of patterns or rules from vast amounts of data
- Data warehousing and Data mining
 - Data mining can be used in conjunction with a data warehouse to help with certain decisions
 - Data mining can be applied to operational databases but to make it more efficient and meaningful it is applied to data warehouses
- Data mining applications should be considered early during the design of a data warehouse

-- Data Warehouse Architecture

-- Goals of Data Mining

- Prediction --- data mining can show how certain attributes within the data will behave in the future
- Identification --- data patterns can be used to identify the existence of an item, event, or an activity
- Classification --- data mining can partition the data so that different classes or categories can be identified based on combinations of parameters
- Optimization --- one eventual goal of data mining may be to optimize the use of limited resources such as time, space, money, or materials

-- Knowledge Discovery During Data Mining

- Deductive knowledge vs. inductive knowledge
- Data mining addresses inductive knowledge
- The knowledge discovered during data mining can be described as
 - Association rules
 - Classification hierarchies
 - Sequential patterns
 - 4. Patterns within time series
 - Categorization and segmentation

March 29, 2008

-- Types of Knowledge Discovered During Data Mining

- Association rules --- correlate the presence of a set of items with another range of values for another set of variables
- Classification hierarchies --- create hierarchies of classes
- Sequential patterns --- sequence of actions or events
- Pattern with time series --- similarities detected within positions of the time series
- Categorization and segmentation --- partition a given population of events or items into sets of "similar" elements.

March 29, 2008 ICS 541: Info. Integration

34

--- Association Rules ...

- An **association rule** is of the form $X \Rightarrow Y$ where $X = \{x_1, x_2,, x_n\}$ and $Y = \{y_1, y_2, ..., y_m\}$ are sets of distinct items. The rule states that if a customer buys X, he is also likely to buy Y
- Support for the rule LHS ⇒ RHS is the percentage of transactions that hold all the items in the union, the set LHS ∪ RHS.
- Confidence for the rule LHS ⇒ RHS is the percentage (fraction) of all transactions that include items in LHS and out of these the ones that include items of RHS.

... --- Association Rules ...

Example:

Transaction id	<u>Time</u>	items bought
101	6:35	milk, bread, cookies, juice
792	7:38	milk, juice
1130	8:05	milk, eggs
1735	8:40	bread, cookies, coffee

Milk → Juice, 50% support, 66.7% confidence
Bread → Juice, 25% support, 50% confidence

... --- Association Rules ...

- The goal of mining association rules is to generate all possible rules that exceed some minimum userspecified support and confidence thresholds.
- The problem of mining association rules is thus decomposed into two sub-problems:
 - Generate all item sets that have a support that exceeds the threshold.
 These sets of items are called large itemsets.
 - For each large item set, all the rules that have a minimum confidence are generated as follows: for a large itemset X and Y ⊂ X, let Z = X Y; then if support (X)/support (Z) ⇒ minimum confidence, the rule Z ⇒ Y (i.e., X Y ⇒ Y) is a valid rule.

37

... --- Association Rules ...

Basic Algorithms for Finding Association Rules

- The current algorithms (Apriori Algorithm) that find large itemsets are designed to work as follows:
 - Test the support for itemsets of length 1, called 1-itemsets, by scanning the database. Discard those that do not meet minimum required support.
 - Extend the large 1-itemsets into 2-itemsets by appending one item each time, to generate all candidate itemsets of length two. Test the support for all candidate itemsets by scanning the database and eliminate those 2-itemsets that do not meet the minimum support.
 - Repeat the above steps; at step k, the previously found (k 1) itemsets are extended into k-itemsets and tested for minimum support.
 - The process is repeated until no large itemsets can be found.

... --- Association Rules

- Apriori Algorithm:
 - Is based on the following 2 properties:
 - Antimonotonicity
 - Downward closure
- Several other algorithms have been proposed to mine association rules:
 - Sampling algorithms
 - Frequent-pattern tree algorithm
 - Partition algorithm

-- Approaches to Other Data Mining Problems

- Discovery of sequential patterns
- Discovery of Patterns in Time Series
- Discovery of Classification Rules
- Regression
- Neural Networks
- Genetic Algorithms
- Clustering and Segmentation

40

-- Applications of Data Mining

- Data mining can be applied to a large variety of decision-making contexts in business like
 - Marketing
 - Finance
 - Manufacturing
 - Health care

- Reading list

All Chapter 20 except sections 20.2 and 20.3

END