I nformation I ntegration

Chapter 20

Objectives

- To have a shallow understanding of what a data warehouse and data mining are.

- Lecture outline

- Need for Information Integration (II)
- The Three most common approaches of II
- Problems of II
- OLAP
- Data Mining

- Need for Information Integration

Query

Result

- The Three Most Common Approaches of II

- Federated DBs
- Mediation
- Warehousing

-- Federated Databases

- The sources are independent
- One source can call on others to supply information
- Advantage:
- Easy to build.
- Disadvantage:
- For n data sources, $\mathrm{n}(\mathrm{n}-1)$ pieces of code is needed

-- Mediators

- Supports a collection of views that integrate several sources.
- Unlike Data warehouse, the views are not materialized.
- The mediator sends queries to the corresponding wrappers.
- The results come back and are combined at the mediator

-- Data Warehouses

- Data from several sources is extracted and combined into a global schema.
- The data is stored in the warehouse
- User updates to the WH is generally forbidden, since they are not reflected in the source.
- Three ways of maintaining DW.
- Periodic construction
- Periodic update
- Immediate update

- Problems of Information Integration

- Data in various Databases while having the same meaning can be represented in many different ways.
- Data type difference
- A field can be represented as character in one and integer in the other
- Values difference
- The same concept can be represented by different constants: example: sex can be represented as F and M or as 0 and 1 .
- Semantic difference
- A relation in one DB excludes some entities while the same relation in another DB includes the same entities.
- Missing values
- A certain attribute in a relation in one DB may be missing from the corresponding relation in the other DB.
- On-Line Analytical Processing (OLAP)
- What is OLAP
- OLAP Applications
- A Multidimensional View of OLAP Data
- Star Schema
- Data Cubes
- OLAP Queries

-- What is OLAP

- The activity of querying a DW for patterns or trends of importance for an organization.
- Involve highly complex queries that use one or more aggregations.
- These queries are often termed OLAP or decision support system (DSS) queries.
- In contrast to OLTP queries, OLAP queries typically examine large number of data.
- Example:

Shema

Sales(serialNo, date, dealer, price) Autos(serialNo, model, color) Dealers(name, city, state, phone)

OLAP (DSS) query

SELECT state, AVG(price)
FROM Sales, Dealer
WHERE Sales.dealer = Dealers.name
AND date > '2001-01-04'
GROUP BY state:

-- A Multidimensional View of OLAP Data

- In typical OLAP applications there is a central relation called fact table.
- Fact table represents events or objects of interest such as sales.
- It helps to envision the records in a fact table as arranged in a multidimensional space (cube).

-- Star Schema

- A star schema has 2 types of tables
- A fact table
- Is the center of the star and is linked to other relations
- It normally has several attributes that represent dimension and one or more dependent attributes that represent the properties of interest.
- Dimension tables: Smaller tables which are referenced by the fact table.

-- Data Cubes ...

Fact relation

Two-dimensional cube

sale	Product	Client	Amt
	p 1	c 1	12
	p 2	c 1	11
	p 1	c 3	50
	p 2	c 2	8

	c1	c2	c3
p1	12		50
p2	11	8	

...-- Data Cubes ...

Fact relation

sale	Product	Client	Date	Amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

3-dimensional cube

... -- Data Cubes ...

- In multidimensional data model together with measure values usually we store summarizing information (aggregates)

	c1	c2	c3	Sum
p1	56	4	50	110
p2	11	8		19
Sum	67	12	50	$\mathbf{1 2 9}$

...-- Data Cubes

_- Date

-- The Cube Operator ...

... -- The Cube Operator ...

-- Aggregation Using Hierarchies ...

customer

 region
 country

	region A	region B
p1	12	50
p2	11	8

(customer c1 in Region A; customers c2, c3 in Region B)

-- OLAP Servers

- Relational OLAP (ROLAP)
- Extended relational DBMS that maps operations on multidimensional data to standard relations operations.
- Store all information, including fact tables, as relations
- Multidimensional OLAP (MOLAP)
- Special purpose server that directly implements multidimensional data and operations
- Store multidimensional datasets as arrays.

-- OLAP Queries: Roll Up

- Summarizes data along dimension.

Roll up
aggregation with respect to city

	Video	Camera	CD
Dammam	22	8	30
Riyadh	23	18	22

-- OLAP Queries: Drill Down ...

- Roll down, drill down: go from higher level summary to lower level summary or detailed data
- For a particular product category, find the detailed sales data for each salesperson by date
- Given total sales by state, we can ask for sales per city, or just sales by city for a selected state

... -- OLAP Queries: Drill down

-- Other OLAP Queries ...

- Slice and dice: select and project
- Sales of video in USA over the last 6 months
- Slicing and dicing reduce the number of dimensions
- Pivot: reorient cube
- The result of pivoting is called a cross-tabulation
- If we pivot the Sales cube on the Client and Product dimensions, we obtain a table for each client for each product value

... Other OLAP Queries

- Pivoting can be combined with aggregation

sale	prodid	clientid	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

	c1	c2	c3	Sum
1	23	8	50	81
2	44	4		48
Sum	67	12	50	129

	c1	c2	c3	Sum
p1	56	4	50	110
p2	11	8		19
Sum	67	12	50	129

-- Cube Implementations

- Data cubes are implemented by materialized views
- A materialized view is the result of some query, which we chose to store its output table in the database.
- For the data cube, the views we would choose to materialize will typically be aggregations of the full data cube.

- Lattice of views are created for

Lattice performance reasons

- Data Mining

- Data mining: an introduction
- Goals of data mining
- Knowledge discovery during data mining
- Applications of data mining

-- Data Mining: An Introduction

- Data mining refers to the discovery of new information in terms of patterns or rules from vast amounts of data
- Data warehousing and Data mining
- Data mining can be used in conjunction with a data warehouse to help with certain decisions
- Data mining can be applied to operational databases but to make it more efficient and meaningful it is applied to data warehouses
- Data mining applications should be considered early during the design of a data warehouse

-- Data Warehouse Architecture

-- Goals of Data Mining

- Prediction --- data mining can show how certain attributes within the data will behave in the future
- I dentification --- data patterns can be used to identify the existence of an item, event, or an activity
- Classification --- data mining can partition the data so that different classes or categories can be identified based on combinations of parameters
- Optimization --- one eventual goal of data mining may be to optimize the use of limited resources such as time, space, money, or materials

-- Knowledge Discovery During Data Mining

- Deductive knowledge vs. inductive knowledge
- Data mining addresses inductive knowledge
- The knowledge discovered during data mining can be described as

1. Association rules
2. Classification hierarchies
3. Sequential patterns
4. Patterns within time series
5. Categorization and segmentation

-- Types of Knowledge Discovered During Data Mining

- Association rules --- correlate the presence of a set of items with another range of values for another set of variables
- Classification hierarchies --- create hierarchies of classes
- Sequential patterns --- sequence of actions or events
- Pattern with time series --- similarities detected within positions of the time series
- Categorization and segmentation --- partition a given population of events or items into sets of "similar" elements.

--- Association Rules ...

- An association rule is of the form $X \Rightarrow Y$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ are sets of distinct items. The rule states that if a customer buys X, he is also likely to buy Y
- Support for the rule LHS \Rightarrow RHS is the percentage of transactions that hold all the items in the union, the set LHS \cup RHS.
- Confidence for the rule LHS \Rightarrow RHS is the percentage (fraction) of all transactions that include items in LHS and out of these the ones that include items of RHS.

...--- Association Rules ...

- Example:

Transaction id Time items bought 101 6:35 milk, bread, cookies, juice
792 7:38 milk, juice
1130 8:05 milk, eggs

1735 8:40 bread, cookies, coffee

Milk \rightarrow Juice, 50% support, 66.7% confidence
Bread \rightarrow J uice, 25% support, 50\% confidence

...--- Association Rules ...

- The goal of mining association rules is to generate all possible rules that exceed some minimum userspecified support and confidence thresholds.
- The problem of mining association rules is thus decomposed into two sub-problems:
- Generate all item sets that have a support that exceeds the threshold. These sets of items are called large itemsets.
- For each large item set, all the rules that have a minimum confidence are generated as follows:
for a large itemset X and $Y \subset X$, let $Z=X-Y$; then if support (X) /support $(Z) \Rightarrow$ minimum confidence, the rule $Z \Rightarrow$ Y (i.e., $X-Y \Rightarrow Y$) is a valid rule.

... --- Association Rules ...

Basic Algorithms for Finding Association Rules

- The current algorithms (Apriori Algorithm) that find large itemsets are designed to work as follows:
- Test the support for itemsets of length 1, called 1-itemsets, by scanning the database. Discard those that do not meet minimum required support.
- Extend the large 1-itemsets into 2 -itemsets by appending one item each time, to generate all candidate itemsets of length two. Test the support for all candidate itemsets by scanning the database and eliminate those 2-itemsets that do not meet the minimum support.
- Repeat the above steps; at step k, the previously found ($k-1$) itemsets are extended into k-itemsets and tested for minimum support.
- The process is repeated until no large itemsets can be found.

...--- Association Rules

- Apriori Algorithm:
- Is based on the following 2 properties:

1. Antimonotonicity
2. Downward closure

- Several other algorithms have been proposed to mine association rules:
- Sampling algorithms
- Frequent-pattern tree algorithm
- Partition algorithm

-- Approaches to Other Data Mining Problems

- Discovery of sequential patterns
- Discovery of Patterns in Time Series
- Discovery of Classification Rules
- Regression
- Neural Networks
- Genetic Algorithms
- Clustering and Segmentation

-- Applications of Data Mining

- Data mining can be applied to a large variety of decision-making contexts in business like
- Marketing
- Finance
- Manufacturing
- Health care
- Reading list
- All Chapter 20 except sections 20.2 and 20.3

END

