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Index Structures

Chapter 13 of GUW 
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Objectives

Different ways of organizing blocks
What is the best way to organize record in blocks to 
minimize:

Query cost
Exact match
Partial match
Range 
Join

Insertion cost
Deletion cost
Update cost
Storage cost
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- Lecture outline

Basic Concepts

Index on Sequential files

Secondary Indexes

B-Trees

Hash Tables
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- Basic Concepts …

Disk

Index blocks

Data blocks

Empty blocks



March 29, 2008 ICS 541: Index Structures 5

… - Basic Concepts …

Data blocks
Index blocks resultQuery
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… - Basic Concepts

Block pointer

Record pointer

Record pointers take more space than block pointers. Why?
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- Indexes Sequential Files

Sequential files

Dense Index

Sparse Index

Multiple level of Index

Index with Duplicate Search Keys

Managing Indexes During Data Modification
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-- Sequential Files

Sequential File
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-- Dense Index

Sequential FileDense Index
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-- Sparse Index 

Sequential FileSparse Index
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-- Dense Vs Sparse Index: Example

Relation
Relation R with 1,000,000 tuples
A block of size 4096 bytes (4k)
10 R tuples per block
Data space required => 1000000/10 * 4k = 400MB.

Dense index
record size: 30 Bytes for search key + 8 bytes for record pointer

Can fit 100 index records per block
Dense index space = 1000000/100 * 4k = 40MB.
Binary search cost log2(10000) = 14 disk accesses at most
Keeping blocks (1/2, ¼, ¾, 1/8, …) in memory can lower disk access.

Sparse index
1000 index blocks = 4MB
Binary search cost log2(1000) = 10 disk accesses at most
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-- Multiple level of Index

Sequential FileSparse 2nd level
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-- Contiguous sequential file

K1

K3

K4

K2

R1

R2

R3

R4

say:
1024 B
per block

if we want K3 block:
get it at offset
(3-1)1024
= 2048 bytes
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-- Sparse vs. Dense Tradeoff

Sparse

Less index space per record can keep more of index in memory

Dense

Can tell if any record exists without accessing file
Must be used for secondary index
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--Terms

Index sequential file
Search key ( ≠ primary key)
Primary index (on Sequencing field)
Secondary index
Dense index (all Search Key values in)
Sparse index
Multi-level index
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-- Duplicate keys …
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-- Duplicate keys …

Dense index, one way to implement?
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… -- Duplicate keys …
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Dense index, better way?
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… -- Duplicate keys ….
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Sparse index, one way?
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… -- Duplicate keys …
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Sparse index, another way?

– place first new key from block

should
this be
40?
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… -- Duplicate keys

Incase of primary index may point to first instance of 
each value only

a
a

b

File

a

Index

.

.
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-- Managing Indexes During Data Modification

Deletion from Sparse Index

Insertion into Sparse Index
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--- Deletion from sparse index …
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… --- Deletion from sparse index …

– delete record 40
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… --- Deletion from sparse index …

– delete record 30
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… ---- Deletion from sparse index …
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… --- Deletion from dense index …
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… --- Deletion from dense index

– delete record 30
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--- Insertion, sparse index case …
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… --- Insertion, sparse index case …
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• our lucky day!
we have free space
where we need it!
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… --- Insertion, sparse index case …
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• Illustrated: Immediate reorganization
• Variation:

– insert new block (chained file)
– update index
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… --- Insertion, sparse index case
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overflow blocks
(reorganize later...)
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--- Insertion, dense index case

Similar

Often more expensive . . . 
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- Secondary Indexes

Design of Secondary Indexes

Duplicate Values and Secondary Indexes

Applications of Secondary Indexes

Indirection in Secondary Indexes
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-- Design of Secondary Indexes …

Sequence
field
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… -- Design of Secondary Indexes …
Sequence
field
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… -- Design of Secondary Indexes …
Sequence

Dense index field
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… -- Design of Secondary Indexes

Lowest level is dense
Record pointers

Other levels are sparse
Block pointers
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-- Duplicate Values and Secondary Indexes …
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-- Duplicate Values and Secondary Indexes …

one option...
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Problem:
excess overhead!

• disk space
• search time
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-- Duplicate Values and Secondary Indexes …

another option...
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Problem:
variable size
records in
index!
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-- Duplicate Values and Secondary Indexes …
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---Why “bucket” idea is useful …

Indexes Records
Name: primary EMP (name,dept,floor,...)

Dept: secondary
Floor: secondary
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… ---Why “bucket” idea is useful …

Query:  Get employees in  (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

→Intersect toy bucket and 2nd Floor 
bucket to get set of matching EMP’s. 
Used for text retrieval
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… ---Why “bucket” idea is useful

This idea used in  text information retrieval.

Documents

Inverted lists

cat

dog

...the cat is 
fat ...

...was raining
cats and dogs...

...Fido the 
dog ...
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-- Conventional indexes

Advantage:
- Simple
- Index is sequential file good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance
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--- Example

Index (sequential)

continuous

free space
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overflow area
(not sequential)
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-- Next

Another type of index

Give up on sequentiality of index

Try to get “balance”

Btree
Has Schemes
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B+Tree Example n=3
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-- Sample non-leaf

57 81 95

To keys
>95

To keys
57> and <=81 

To keys
81 > and <=95

To keys
<57



March 29, 2008 ICS 541: Index Structures 51

-- Sample leaf node:

From non-leaf node

to next leaf
in sequence
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-- Size of Nodes

n keys

n + 1 Pointers

Use at least

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data
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--- Example: n = 3

Full node min. node

Non-leaf

Leaf
12

0
15

0
18

0

30
30 353 5 11
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-- B+tree rules tree of order n

(1) All leaves at same lowest level
(balanced tree)

(2) Pointers in leaves point to records
except for “sequence pointer”
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-- Insert into B+tree

(a) simple case
space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root
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--- Insert key = 32 n=3
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n=3--- Insert key = 7
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n=3
--- Insert key = 160
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--- New root,  insert 45 n=3

10 20 30

1 2 3 10 12 20 25 30 32 40 40 45

40

30new root
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-- Deletion from B+tree

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf
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n=4--- Coalesce with sibling: Delete 50

10 40 10
0

10 20 30 40 5040
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n=4--- Redistribute key: Delete 50

10 40 10
0

10 20 30 35 40 5035

35
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n=4--- Non-leaf coalesce: Delete 37

40 4530 3725 2620 2210 141 3

10 20 30 4040

30

25

25

new root
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--- B+tree deletions in practice

– Often, coalescing is not implemented
Too hard and not worth it!
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- Hashing

key → h(key)
<key>

Buckets
(typically 1
disk block)...
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-- Two alternatives …

.

..

.

..
records(1) key → h(key)
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… -- Two alternatives

(2) key → h(key)

Index

record
key 1

Alt (2) for “secondary” search key
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-- Example hash function …

Key = ‘x1 x2 … xn’ n byte character string

Have b buckets

h:  add x1 + x2 + ….. Xn

compute sum modulo b
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… -- Example hash function

This may not be best function …

Read Knuth Vol. 3 if you really need to select a good 
function.

Good hash Expected number of
function: keys/bucket is the

same for all buckets
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-- Within a bucket

Do we keep keys sorted?

Yes

if CPU time critical,  and 

Inserts/Deletes not too frequent
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-- Example to illustrate  inserts, overflows, deletes

h(K)
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… -- Example to illustrate  insert …

0

1

2

3

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

d

a
c
b

e

h(e) = 1
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… -- Example to illustrate  delete …

Delete:
e
f

0

1

2

3

a

b
c
e

d

f
g

maybe move
“g” up

d
c
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--- Rule of thumb

Try to keep space utilization
between 50% and 80%

Utilization = # keys used
total # keys that fit 

If < 50%, wasting space
If > 80%, overflows significant

depends on how good hash
function is & on # keys/bucket
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-- How do we cope with growth?

Static hashing

Overflows and reorganizations
Very expensive

Solution

Dynamic hashing

Extensible

Linear
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-- Extensible hashing: two ideas ..

(a) Use i of b bits output by hash function
b

h(K) →

use i → grows over time….

00110101
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… -- Extensible hashing: two ideas 

(b) Use directory

h(K)[i ] to bucket

...

...
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--- Example: h(k) is 4 bits; 2 keys/bucket …

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2
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… --- Example: h(k) is 4 bits; 2 keys/bucket …

1
0001

2
1001
1010

2
1100

Insert:

0111

0000

00

01

10

11

2

0111

0000

0111

0001

2

2

i =
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… --- Example: h(k) is 4 bits; 2 keys/bucket

00

01

10

11

2i =

21001
1010

21100

20111

20000
0001

Insert:

1001

1001
1001

1010

000

001

010

011

100

101

110

111

3i =

3

3
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--- Extensible hashing:  deletion

Two option:

No merging of blocks

Merge blocks and cut directory if possible
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---- Deletion example

Run thru insert example in reverse!
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-- Summary: Extensible hashing

Can handle growing files
- No full reorganizations

+

Indirection
(Not bad if directory in memory)

Directory doubles in size
(Now it fits, now it does not)

-

-
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-- Summary: Extensible hashing

Advantage

No reorganization is needed

One disk access per record

Disadvantage

Doubling bucket array is expensive

The size of the bucket array may no longer fit into memory

The number of bucket may be much bigger than the blocks

Example: Splitting records can only be done in higher bits. 
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-- Linear hashing

Another dynamic hashing scheme

Two ideas:

(a) Use i low order bits of hash

01110101
grows

b

i
(b) File grows linearly



March 29, 2008 ICS 541: Index Structures 86

Example b=4 bits,   i =2,   2 keys/bucket

Future
growth
buckets

0101
• can have overflow chains!

• insert 0101

0101
1111

0000
1010
00 01             10 11

m = 01 (max used block)

If h(k)[i ] ≤ m, then
look at bucket h(k)[i ]
else, look at bucket h(k)[i ] - 2i -1

Rule
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Example b=4 bits,   i =2,   2 keys/bucket

00 01              10 11

0101
1111

0000
1010

m = 01 (max used block)
10

1010

0101 • insert 0101

11

1111
0101

Future
growth
buckets
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Example Continued: How to grow beyond this?

00 01              10 11

111110100101
0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100           101             110        111

3

. . .

100

100

101

101

0101
0101
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--- When do we expand file?

Keep track of:     # used slots
total # of slots =   U

If U > threshold then increase m
(and maybe i )



March 29, 2008 ICS 541: Index Structures 90

-- Summary: Linear Hashing

Can handle growing files
- with less wasted space
- with no full reorganizations

No indirection like extensible hashing

+

+

Can still have overflow chains-
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-- Hashing Summary

Hashing
- How it works
- Dynamic hashing

- Extensible
- Linear
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-- Indexing Vs Hashing …

Hashing good for probes given key
e.g.,   SELECT …

FROM R
WHERE R.A = 5



March 29, 2008 ICS 541: Index Structures 93

… -- Indexing vs Hashing

INDEXING (Including B Trees) good for
Range Searches:
e.g.,  SELECT

FROM R
WHERE R.A > 5
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- Reading list

Chapter 13 of GUW
B-tree (WebCt)
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END


