
March 29, 2008 ICS 541: Index Structures 1

Index Structures

Chapter 13 of GUW

March 29, 2008 ICS 541: Index Structures 2

Objectives

Different ways of organizing blocks
What is the best way to organize record in blocks to
minimize:

Query cost
Exact match
Partial match
Range
Join

Insertion cost
Deletion cost
Update cost
Storage cost

March 29, 2008 ICS 541: Index Structures 3

- Lecture outline

Basic Concepts

Index on Sequential files

Secondary Indexes

B-Trees

Hash Tables

March 29, 2008 ICS 541: Index Structures 4

- Basic Concepts …

Disk

Index blocks

Data blocks

Empty blocks

March 29, 2008 ICS 541: Index Structures 5

… - Basic Concepts …

Data blocks
Index blocks resultQuery

March 29, 2008 ICS 541: Index Structures 6

… - Basic Concepts

Block pointer

Record pointer

Record pointers take more space than block pointers. Why?

March 29, 2008 ICS 541: Index Structures 7

- Indexes Sequential Files

Sequential files

Dense Index

Sparse Index

Multiple level of Index

Index with Duplicate Search Keys

Managing Indexes During Data Modification

March 29, 2008 ICS 541: Index Structures 8

-- Sequential Files

Sequential File

20
10

40
30

60
50

80
70

100
90

March 29, 2008 ICS 541: Index Structures 9

-- Dense Index

Sequential FileDense Index

20
10

40
30

60
50

80
70

100
90

10
20
30
40

50
60
70
80

90
100
110
120

Search key

March 29, 2008 ICS 541: Index Structures 10

-- Sparse Index

Sequential FileSparse Index

20
10

40
30

60
50

80
70

100
90

10
30
50
70

90
110
130
150

170
190
210
230

March 29, 2008 ICS 541: Index Structures 11

-- Dense Vs Sparse Index: Example

Relation
Relation R with 1,000,000 tuples
A block of size 4096 bytes (4k)
10 R tuples per block
Data space required => 1000000/10 * 4k = 400MB.

Dense index
record size: 30 Bytes for search key + 8 bytes for record pointer

Can fit 100 index records per block
Dense index space = 1000000/100 * 4k = 40MB.
Binary search cost log2(10000) = 14 disk accesses at most
Keeping blocks (1/2, ¼, ¾, 1/8, …) in memory can lower disk access.

Sparse index
1000 index blocks = 4MB
Binary search cost log2(1000) = 10 disk accesses at most

March 29, 2008 ICS 541: Index Structures 12

-- Multiple level of Index

Sequential FileSparse 2nd level

20
10

40
30

60
50

80
70

100
90

10
30
50
70

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

March 29, 2008 ICS 541: Index Structures 13

-- Contiguous sequential file

K1

K3

K4

K2

R1

R2

R3

R4

say:
1024 B
per block

if we want K3 block:
get it at offset
(3-1)1024
= 2048 bytes

March 29, 2008 ICS 541: Index Structures 14

-- Sparse vs. Dense Tradeoff

Sparse

Less index space per record can keep more of index in memory

Dense

Can tell if any record exists without accessing file
Must be used for secondary index

March 29, 2008 ICS 541: Index Structures 15

--Terms

Index sequential file
Search key (≠ primary key)
Primary index (on Sequencing field)
Secondary index
Dense index (all Search Key values in)
Sparse index
Multi-level index

March 29, 2008 ICS 541: Index Structures 16

-- Duplicate keys …

10
10

20
10

30
20

30
30

45
40

March 29, 2008 ICS 541: Index Structures 17

-- Duplicate keys …

Dense index, one way to implement?

10
10
10
10

10
10
10
20

10
10
10
20 20

10
20
10

30
20
30
2020

30
30
30

20
30
30
30 30

30
30
30

45
40
45
40

March 29, 2008 ICS 541: Index Structures 18

… -- Duplicate keys …

10
20
30
40

Dense index, better way?

10
10

20
10

30
20

30
30

45
40

March 29, 2008 ICS 541: Index Structures 19

… -- Duplicate keys ….

10
10
20
30

Sparse index, one way?

10
10

ca
re

fu
l i

f
lo

ok
in

g
fo

r
20

 o
r

30
!

20
10

30
20

30
30

45
40

March 29, 2008 ICS 541: Index Structures 20

… -- Duplicate keys …

10
10

20
10

30
20

30
30

45
40

10
20
30
30

Sparse index, another way?

– place first new key from block

should
this be
40?

March 29, 2008 ICS 541: Index Structures 21

… -- Duplicate keys

Incase of primary index may point to first instance of
each value only

a
a

b

File

a

Index

.

.

March 29, 2008 ICS 541: Index Structures 22

-- Managing Indexes During Data Modification

Deletion from Sparse Index

Insertion into Sparse Index

March 29, 2008 ICS 541: Index Structures 23

--- Deletion from sparse index …

20
10

10
30
50
70

90
110
130
150

40
30

60
50

80
70

March 29, 2008 ICS 541: Index Structures 24

… --- Deletion from sparse index …

– delete record 40

20
10

10
30
50
70

90
110
130
150

40
30

60
50

80
70

March 29, 2008 ICS 541: Index Structures 25

… --- Deletion from sparse index …

– delete record 30

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

40
40

March 29, 2008 ICS 541: Index Structures 26

… ---- Deletion from sparse index …

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

– delete records 30 & 40

50
70

March 29, 2008 ICS 541: Index Structures 27

… --- Deletion from dense index …

20
10

40
30

10
20
30
40

60
5050

60
70
80 80

70

March 29, 2008 ICS 541: Index Structures 28

… --- Deletion from dense index

– delete record 30

20
10

40
30

10
20
30
40

4040

60
5050

60
70
80 80

70

March 29, 2008 ICS 541: Index Structures 29

--- Insertion, sparse index case …

20
10

30

50
40

60

10
30
40
60

March 29, 2008 ICS 541: Index Structures 30

… --- Insertion, sparse index case …

20
10

30

50
40

60

10
30
40
60

– insert record 34

34

• our lucky day!
we have free space
where we need it!

March 29, 2008 ICS 541: Index Structures 31

… --- Insertion, sparse index case …

20
10

30

50
40

60

10
30
40
60

– insert record 15

15

20
30

20

• Illustrated: Immediate reorganization
• Variation:

– insert new block (chained file)
– update index

March 29, 2008 ICS 541: Index Structures 32

… --- Insertion, sparse index case

20
10

30

50
40

60

10
30
40
60

– insert record 25

25

overflow blocks
(reorganize later...)

March 29, 2008 ICS 541: Index Structures 33

--- Insertion, dense index case

Similar

Often more expensive . . .

March 29, 2008 ICS 541: Index Structures 34

- Secondary Indexes

Design of Secondary Indexes

Duplicate Values and Secondary Indexes

Applications of Secondary Indexes

Indirection in Secondary Indexes

March 29, 2008 ICS 541: Index Structures 35

-- Design of Secondary Indexes …

Sequence
field

50
30

70
20

40
80

10
100

60
90

March 29, 2008 ICS 541: Index Structures 36

… -- Design of Secondary Indexes …
Sequence
field

50
30

70
20

40
80

10
100

60
90

Sparse index

30
20
80
100

90
...

does not make sense!

March 29, 2008 ICS 541: Index Structures 37

… -- Design of Secondary Indexes …
Sequence

Dense index field

50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

March 29, 2008 ICS 541: Index Structures 38

… -- Design of Secondary Indexes

Lowest level is dense
Record pointers

Other levels are sparse
Block pointers

March 29, 2008 ICS 541: Index Structures 39

-- Duplicate Values and Secondary Indexes …

10
20

40
20

40
10

40
10

40
30

March 29, 2008 ICS 541: Index Structures 40

-- Duplicate Values and Secondary Indexes …

one option...

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

Problem:
excess overhead!

• disk space
• search time

March 29, 2008 ICS 541: Index Structures 41

-- Duplicate Values and Secondary Indexes …

another option...

10
20

40
20

40
10

40
10

40
30

10

40
30

20

Problem:
variable size
records in
index!

March 29, 2008 ICS 541: Index Structures 42

-- Duplicate Values and Secondary Indexes …

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

March 29, 2008 ICS 541: Index Structures 43

---Why “bucket” idea is useful …

Indexes Records
Name: primary EMP (name,dept,floor,...)

Dept: secondary
Floor: secondary

March 29, 2008 ICS 541: Index Structures 44

… ---Why “bucket” idea is useful …

Query: Get employees in (Toy Dept) ^ (2nd floor)

Dept. index EMP Floor index

Toy 2nd

→Intersect toy bucket and 2nd Floor
bucket to get set of matching EMP’s.
Used for text retrieval

March 29, 2008 ICS 541: Index Structures 45

… ---Why “bucket” idea is useful

This idea used in text information retrieval.

Documents

Inverted lists

cat

dog

...the cat is
fat ...

...was raining
cats and dogs...

...Fido the
dog ...

March 29, 2008 ICS 541: Index Structures 46

-- Conventional indexes

Advantage:
- Simple
- Index is sequential file good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance

March 29, 2008 ICS 541: Index Structures 47

--- Example

Index (sequential)

continuous

free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

March 29, 2008 ICS 541: Index Structures 48

-- Next

Another type of index

Give up on sequentiality of index

Try to get “balance”

Btree
Has Schemes

March 29, 2008 ICS 541: Index Structures 49

B+Tree Example n=3

Root

10
0

12
0

15
0

18
0

30

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

March 29, 2008 ICS 541: Index Structures 50

-- Sample non-leaf

57 81 95

To keys
>95

To keys
57> and <=81

To keys
81 > and <=95

To keys
<57

March 29, 2008 ICS 541: Index Structures 51

-- Sample leaf node:

From non-leaf node

to next leaf
in sequence

57 81 95

To
 r

ec
or

d
w

ith
 k

ey
 5

7

To
 r

ec
or

d
w

ith
 k

ey
 8

1

To
 r

ec
or

d
w

ith
 k

ey
 8

5

March 29, 2008 ICS 541: Index Structures 52

-- Size of Nodes

n keys

n + 1 Pointers

Use at least

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data

March 29, 2008 ICS 541: Index Structures 53

--- Example: n = 3

Full node min. node

Non-leaf

Leaf
12

0
15

0
18

0

30
30 353 5 11

co
un

ts
 e

ve
n

if
nu

ll

March 29, 2008 ICS 541: Index Structures 54

-- B+tree rules tree of order n

(1) All leaves at same lowest level
(balanced tree)

(2) Pointers in leaves point to records
except for “sequence pointer”

March 29, 2008 ICS 541: Index Structures 55

-- Insert into B+tree

(a) simple case
space available in leaf

(b) leaf overflow

(c) non-leaf overflow

(d) new root

March 29, 2008 ICS 541: Index Structures 56

--- Insert key = 32 n=3

10
0

30

3 5 11 30 31 32

March 29, 2008 ICS 541: Index Structures 57

n=3--- Insert key = 7

10
0

3 5 11 30 31

30

3 5

7

7

March 29, 2008 ICS 541: Index Structures 58

n=3
--- Insert key = 160

10
0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

18
0

16
0

17
9

March 29, 2008 ICS 541: Index Structures 59

--- New root, insert 45 n=3

10 20 30

1 2 3 10 12 20 25 30 32 40 40 45

40

30new root

March 29, 2008 ICS 541: Index Structures 60

-- Deletion from B+tree

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf

March 29, 2008 ICS 541: Index Structures 61

n=4--- Coalesce with sibling: Delete 50

10 40 10
0

10 20 30 40 5040

March 29, 2008 ICS 541: Index Structures 62

n=4--- Redistribute key: Delete 50

10 40 10
0

10 20 30 35 40 5035

35

March 29, 2008 ICS 541: Index Structures 63

n=4--- Non-leaf coalesce: Delete 37

40 4530 3725 2620 2210 141 3

10 20 30 4040

30

25

25

new root

March 29, 2008 ICS 541: Index Structures 64

--- B+tree deletions in practice

– Often, coalescing is not implemented
Too hard and not worth it!

March 29, 2008 ICS 541: Index Structures 65

- Hashing

key → h(key)
<key>

Buckets
(typically 1
disk block)...

March 29, 2008 ICS 541: Index Structures 66

-- Two alternatives …

.

..

.

..
records(1) key → h(key)

March 29, 2008 ICS 541: Index Structures 67

… -- Two alternatives

(2) key → h(key)

Index

record
key 1

Alt (2) for “secondary” search key

March 29, 2008 ICS 541: Index Structures 68

-- Example hash function …

Key = ‘x1 x2 … xn’ n byte character string

Have b buckets

h: add x1 + x2 + ….. Xn

compute sum modulo b

March 29, 2008 ICS 541: Index Structures 69

… -- Example hash function

This may not be best function …

Read Knuth Vol. 3 if you really need to select a good
function.

Good hash Expected number of
function: keys/bucket is the

same for all buckets

March 29, 2008 ICS 541: Index Structures 70

-- Within a bucket

Do we keep keys sorted?

Yes

if CPU time critical, and

Inserts/Deletes not too frequent

March 29, 2008 ICS 541: Index Structures 71

-- Example to illustrate inserts, overflows, deletes

h(K)

March 29, 2008 ICS 541: Index Structures 72

… -- Example to illustrate insert …

0

1

2

3

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

d

a
c
b

e

h(e) = 1

March 29, 2008 ICS 541: Index Structures 73

… -- Example to illustrate delete …

Delete:
e
f

0

1

2

3

a

b
c
e

d

f
g

maybe move
“g” up

d
c

March 29, 2008 ICS 541: Index Structures 74

--- Rule of thumb

Try to keep space utilization
between 50% and 80%

Utilization = # keys used
total # keys that fit

If < 50%, wasting space
If > 80%, overflows significant

depends on how good hash
function is & on # keys/bucket

March 29, 2008 ICS 541: Index Structures 75

-- How do we cope with growth?

Static hashing

Overflows and reorganizations
Very expensive

Solution

Dynamic hashing

Extensible

Linear

March 29, 2008 ICS 541: Index Structures 76

-- Extensible hashing: two ideas ..

(a) Use i of b bits output by hash function
b

h(K) →

use i → grows over time….

00110101

March 29, 2008 ICS 541: Index Structures 77

… -- Extensible hashing: two ideas

(b) Use directory

h(K)[i] to bucket

...

...

March 29, 2008 ICS 541: Index Structures 78

--- Example: h(k) is 4 bits; 2 keys/bucket …

i = 1
1

1

0001

1001
1100

Insert 1010
1
1100

1010

New directory

2
00

01

10

11

i =

2

2

March 29, 2008 ICS 541: Index Structures 79

… --- Example: h(k) is 4 bits; 2 keys/bucket …

1
0001

2
1001
1010

2
1100

Insert:

0111

0000

00

01

10

11

2

0111

0000

0111

0001

2

2

i =

March 29, 2008 ICS 541: Index Structures 80

… --- Example: h(k) is 4 bits; 2 keys/bucket

00

01

10

11

2i =

21001
1010

21100

20111

20000
0001

Insert:

1001

1001
1001

1010

000

001

010

011

100

101

110

111

3i =

3

3

March 29, 2008 ICS 541: Index Structures 81

--- Extensible hashing: deletion

Two option:

No merging of blocks

Merge blocks and cut directory if possible

March 29, 2008 ICS 541: Index Structures 82

---- Deletion example

Run thru insert example in reverse!

March 29, 2008 ICS 541: Index Structures 83

-- Summary: Extensible hashing

Can handle growing files
- No full reorganizations

+

Indirection
(Not bad if directory in memory)

Directory doubles in size
(Now it fits, now it does not)

-

-

March 29, 2008 ICS 541: Index Structures 84

-- Summary: Extensible hashing

Advantage

No reorganization is needed

One disk access per record

Disadvantage

Doubling bucket array is expensive

The size of the bucket array may no longer fit into memory

The number of bucket may be much bigger than the blocks

Example: Splitting records can only be done in higher bits.

March 29, 2008 ICS 541: Index Structures 85

-- Linear hashing

Another dynamic hashing scheme

Two ideas:

(a) Use i low order bits of hash

01110101
grows

b

i
(b) File grows linearly

March 29, 2008 ICS 541: Index Structures 86

Example b=4 bits, i =2, 2 keys/bucket

Future
growth
buckets

0101
• can have overflow chains!

• insert 0101

0101
1111

0000
1010
00 01 10 11

m = 01 (max used block)

If h(k)[i] ≤ m, then
look at bucket h(k)[i]
else, look at bucket h(k)[i] - 2i -1

Rule

March 29, 2008 ICS 541: Index Structures 87

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101
1111

0000
1010

m = 01 (max used block)
10

1010

0101 • insert 0101

11

1111
0101

Future
growth
buckets

March 29, 2008 ICS 541: Index Structures 88

Example Continued: How to grow beyond this?

00 01 10 11

111110100101
0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

101

101

0101
0101

March 29, 2008 ICS 541: Index Structures 89

--- When do we expand file?

Keep track of: # used slots
total # of slots = U

If U > threshold then increase m
(and maybe i)

March 29, 2008 ICS 541: Index Structures 90

-- Summary: Linear Hashing

Can handle growing files
- with less wasted space
- with no full reorganizations

No indirection like extensible hashing

+

+

Can still have overflow chains-

March 29, 2008 ICS 541: Index Structures 91

-- Hashing Summary

Hashing
- How it works
- Dynamic hashing

- Extensible
- Linear

March 29, 2008 ICS 541: Index Structures 92

-- Indexing Vs Hashing …

Hashing good for probes given key
e.g., SELECT …

FROM R
WHERE R.A = 5

March 29, 2008 ICS 541: Index Structures 93

… -- Indexing vs Hashing

INDEXING (Including B Trees) good for
Range Searches:
e.g., SELECT

FROM R
WHERE R.A > 5

March 29, 2008 ICS 541: Index Structures 94

- Reading list

Chapter 13 of GUW
B-tree (WebCt)

March 29, 2008 ICS 541: Index Structures 95

END

