Index Structures

Chapter 13 of GUW

March 29, 2008 ICS 541: Index Structures

Objectives

= Different ways of organizing blocks

= What is the best way to organize record in blocks to
minimize:
= Query cost
= Exact match
« Partial match
= Range
= Join

Insertion cost
Deletion cost
Update cost
Storage cost

March 29, 2008 ICS 541: Index Structures

- Lecture outline

= Basic Concepts

= Index on Sequential files
= Secondary Indexes

= B-Trees

s Hash Tables

March 29, 2008 ICS 541: Index Structures

- Basic Concepts ...

Disk

k\

= Index blocks

7 Empty blocks

March 29, 2008 ICS 541: Index Structures

... - Basic Concepts ...

Index blocks

Query

March 29, 2008

A 4

A 4

A 4

Data blocks

»

ICS 541: Index Structures

result

... - Basic Concepts

Block pointer

T

Record pointer

= Record pointers take more space than block pointers. Why?

March 29, 2008 ICS 541: Index Structures

- Indexes Sequential Files

= Sequential files

= Dense Index

= Sparse Index

= Multiple level of Index

= Index with Duplicate Search Keys

= Managing Indexes During Data Modification

March 29, 2008 ICS 541: Index Structures

* -- Sequential Files

Sequential File

10

20

30

40

50

60

/0

80

90

100G

March 29, 2008 ICS 541: Index Structures

-- Dense Index

Dense Index Sequential File
10 »10
20 . 20
0| +— 35
P40
Search key 50, —— =5
160
=0 \§ 70
90| - 80
00 L T, 30
110 | i

120 \§

March 29, 2008 ICS 541: Index Structures

* -- Sparse Index

March 29, 2008

Sparse Index

Sequential File

10

10

30

20

50

/0

30

40

90

/]

110

50

130

60

150

/0

170

80

7

190

90

210

100

230

7

_—

ICS 541: Index Structures

10

-- Dense Vs Sparse Index: Example

= Relation
= Relation R with 1,000,000 tuples
= A block of size 4096 bytes (4k)
= 10 R tuples per block
= Data space required => 1000000/10 * 4k = 400MB.
= Dense index
= record size: 30 Bytes for search key + 8 bytes for record pointer
= Can fit 100 index records per block
= Dense index space = 1000000/100 * 4k = 40MB.
= Binary search cost l0g2(10000) = 14 disk accesses at most

= Keeping blocks (1/2, ¥4, %4, 1/8, ...) in memory can lower disk access.

= Sparse index
= 1000 index blocks = 4MB
= Binary search cost log2(1000) = 10 disk accesses at most

March 29, 2008 ICS 541: Index Structures

11

* -- Multiple level of Index

Sparse 2nd level

10

90

N

170

250

AN
\

330

410

490

570

March 29, 2008

N
2

Sequential File

> 10 > 10
30| - 20
70 20
90
110 . o0
130 60
150 -5
170 80
190 . 90
210 100
230

\

ICS 541: Index Structures

12

-- Contiguous sequential file

/’ R1
K1 5 say:
1024 B
K2 per block
K3 R3
K4
R4

= if we want K3 block:
get it at offset
(3-1)1024
= 2048 bytes

March 29, 2008 ICS 541: Index Structures

-- Sparse vs. Dense Tradeoff

= Sparse

= Less index space per record can keep more of index in memory

s Dense

= Can tell if any record exists without accessing file
= Must be used for secondary index

March 29, 2008 ICS 541: Index Structures

14

+ --Terms

= Index sequential file

= Search key (# primary key)

= Primary index (on Sequencing field)

= Secondary index

= Dense index (all Search Key values in)
= Sparse index

= Multi-level index

March 29, 2008 ICS 541: Index Structures

15

+ -- Duplicate keys ...

March 29, 2008

ICS 541: Index Structures

10

10

10

20

20

30

30

30

40

45

16

-- Duplicate keys ...

Dense index, one way to implement?

March 29, 2008

10

I

10

_ —?

10

20

20

30

30

30

ICS 541: Index Structures

10

10

10

20

20

30

30

30

40

45

17

* ... -- Duplicate keys ...

Dense index, better way?

March 29, 2008

10

—

 —?

20

—

30

~

40

=

ICS 541: Index Structures

10

10

10

20

20

30

30

30

40

45

... -- Duplicate keys

for 20 or 30!

careful if looking Wl—

March 29, 2008

Sparse index, one way?

10| —]

10| —

20\ —|

30) ~

<

ICS 541: Index Structures

10

10

10

20

20

30

30

30

40

45

19

* ... -- Duplicate keys ...

— place first new key from block

|4 —»
should ;8 —
this be 20 \\

Sparse index, another way?

March 29, 2008 ICS 541: Index Structures

10

10

10

20

20

30

30

30

40

45

... -- Duplicate keys

= Incase of primary index may point to first instance of
each value only

File

Index

|4

March 29, 2008 ICS 541: Index Structures

-- Managing Indexes During Data Modification

= Deletion from Sparse Index

= Insertion into Sparse Index

March 29, 2008 ICS 541: Index Structures

22

* --- Deletion from sparse index ...

(10
10| — 20
30| —
50 . ————[30
50
90
110 60
130 70
150 30

March 29, 2008 ICS 541: Index Structures

| ... -——- Deletion from sparse index ...

— delete record 40

(10
10] — 20
30| —
s0l - ———[30
70 \\

50

90
110 60
130 70
150 30

March 29, 2008 ICS 541: Index Structures

March 29, 2008

— delete record 30

40

10

—

30

50

B
\

/0

90

I
T
\\

110

130

150

ICS 541: Index Structures

| ... -——- Deletion from sparse index ...

10

20

30

40

50

60

/0

80

— delete records 30 & 40

50
70

March 29, 2008

10

—

3

50

~=
Y

90

110

S

130

150

ICS 541: Index Structures

| ... ---- Deletion from sparse index ...

10

20

50

60

/0

80

... -—- Deletion from dense index ...

10

20| —

30 » 130

40 > 140
50

50 >

70 - (70

80 - (80

March 29, 2008 ICS 541: Index Structures

| ... ——- Deletion from dense index

— delete record 30

40

March 29, 2008

- 10
20| —
30 > 40
S
50
50 >
70 -~ 170
80 — 180

ICS 541: Index Structures 28

--- Insertion, sparse index case ...

March 29, 2008

10

30

40

60

/]

<

ICS 541: Index Structures

10

20

30

40

50

60

29

.. --- Insertion, sparse index case ...

— Insert record 34

- —]10

10| — 20
30 e

40| - 30

40

50

e our lucky day! 60

we have free space

where we need It!

March 29, 2008 ICS 541: Index Structures

— Insert record 15

10| —]

20307 —

‘ "
I
60 \\

e |llustrated: Immediate reorganization

e Variation:
— insert new block (chained file)
— update index

March 29, 2008 ICS 541: Index Structures

... -——- Insertion, sparse index case ...

10

15

20

30

40

50

60

31

— Insert record 25

March 29, 2008

10
10 4 20 -
30| —
0] - [30
60
40
50

60

ICS 541: Index Structures

125

. --- Insertion, sparse index case

overflow blocks
(reorganize later...)

32

* --- Insertion, dense index case

= Similar

= Often more expensive . . .

March 29, 2008 ICS 541: Index Structures

33

- Secondary Indexes

= Design of Secondary Indexes

= Duplicate Values and Secondary Indexes

= Applications of Secondary Indexes

= Indirection in Secondary Indexes

March 29, 2008 ICS 541: Index Structures

34

* -- Design of Secondary Indexes ...

March 29, 2008

ICS 541: Index Structures

Seqguence

ﬁeki\\

30

50

20

/0

80

40

100

10

90

60

35

... -- Design of Secondary Indexes ...

n

Sparse index L fSigﬁljuence

30

30
50

8 20
70

80
40

100
10

does not make sense! 28

March 29, 2008 ICS 541: Index Structures 36

+ -- Design of Secondary Indexes ...

Dense index

10

20

/

10

30

\

50

40

90

/
T

50

\

nigh
evel

March 29, 2008

SO&ISG\\\\

60

/0

ICS 541: Index Structures

Seguence
field \x

30

50

20

/0

80

40

100

10

90

60

37

... -- Design of Secondary Indexes

= Lowest level is dense
= Record pointers

= Other levels are sparse
= Block pointers

March 29, 2008 ICS 541: Index Structures

38

* -- Duplicate Values and Secondary Indexes ...

March 29, 2008

ICS 541: Index Structures

20

10

20

40

10

40

10

40

30

40

39

-- Duplicate Values and Secondary Indexes ...

= one option...

Problem:

excess overhead!
e disk space
e search time

March 29, 2008

10| N

o N

10

20 ~

20

30| N\

40|

40|

40|

40| —
\\\A;

ICS 541: Index Structures

20

10

20

40

10

40

10

40

30

40

40

-- Duplicate Values and Secondary Indexes ...

= another option...

Problem:
variable size
records in
iIndex!

March 29, 2008

10

| |/

20

30

40

/LAY

|

 »

ICS 541: Index Structures

20

10

20

40

10

40

10

40

30

40

41

+—— Duplicate Values and Secondary Indexes ...

10| — 10
20 =
20
AN

—
~

30| - -
T 40
\>

50 10
60| \ 40
10

40

\ 30

\ 40

buckets

March 29, 2008 ICS 541: Index Structures

---Why “bucket” idea Is useful ...

Indexes Records
Name: primary EMP (name,dept,floor,...)
Dept: secondary

Floor: secondary

March 29, 2008 ICS 541: Index Structures

43

... -—-Why “bucket” idea is useful ...

Query: Get employees in (Toy Dept) ~ (2nd floor)

Dept. index

EMP

/'

Toy|

7

a -
.

—Intersect toy bucket and 2nd Floor
bucket to get set of matching EMP’s.

Used for text retrieval

March 29, 2008

ICS 541: Index Structures

Floor index

T~

2nd

44

... ——-Why “bucket” idea Is useful

This idea used in text information retrieval.

cat | T——————

dog T—

\

Inverted lists

March 29, 2008

ICS 541: Index Structures

Documents

...the cat Is
fat ...

...was raining
cats and dogs...

...Fido the
dog ...

45

-- Conventional indexes

Advantage:

- Simple
- Index is sequential file good for scans

Disadvantage:
- Inserts expensive, and/or
- Lose sequentiality & balance

March 29, 2008 ICS 541: Index Structures

46

* --- Example

Index (sequential)

10 >
20 = 39 T,
30 / 3 —
(33 | /1] 35|
continuous 40 - 36 Lj
50 | —+— i
60 | —|— 32 \<,
free space .~ 38 —
34 -
70 [4—
80 I
90 g overflow area

(not sequential)

March 29, 2008 ICS 541: Index Structures 47

-- Next

= Another type of index
= Give up on sequentiality of index

= Try to get “balance”

s Btree
= Has Schemes

March 29, 2008 ICS 541: Index Structures

48

nN=

+ B+Tree Example

Root

08T

0ST

.

49

ICS 541: Index Structures

March 29, 2008

-- Sample non-leaf

To keys
<57

March 29, 2008

To keys To keys
57> and <=81 81 > and <=95

ICS 541: Index Structures

To keys
>95

50

-- Sample leaf node:

From non-leaf node

/

to next leaf

T~ Insequence
N — LO
LO o0 (@))
N — LD
T TO T®O
o> O o>
5L g8 g
~c Yo Yo
O+ O+ O¥
= F=2 F=2

March 29, 2008 ICS 541: Index Structures

51

-- Size of Nodes

= N keys
= N + 1 Pointers

s Use at least

Non-leaf: | (n+1)/2] pointers

Leaf:

March 29, 2008

[(n+1)/2] pointers to data

ICS 541: Index Structures

52

--- Example: n = 3

~
Non-leaf
<
-

Leaf

.

<
g

March 29, 2008

Full node
A
4 N
o O O
AN LO 00
A

ICS 541: Index Structures

min. node
A

4 N
(@)
Q)]

“T 30
T35

counts even if null

53

-- B+tree rules tree of order n

@) All leaves at same lowest level
(balanced tree)

@ Pointers in leaves point to records
except for “sequence pointer”

March 29, 2008 ICS 541: Index Structures

54

-- Insert into B+tree

(a) simple case
= Space available in leaf

(b) leaf overflow
(c) non-leaf overflow

(d) new root

March 29, 2008

ICS 541: Index Structures

55

* --- Insert key = 32

/ AN
/2N
/ \
o LT
T .

March 29, 2008 ICS 541: Index Structures

n=3

56

* --- Insert key = 7

n=3

March 29, 2008

/

/N
8 S =
Ve —

ICS 541: Index Structures

57

nN=

* --- Insert key = 160

081

00T

0ST
0ZT

4/ !

00¢Z—
081

’

!

6.1
091

v

!

9T
0ST——

58

ICS 541: Index Structures

March 29, 2008

nN=

--- New root, insert 45

N

— AN M

|
v

|
v

|
v

59

Index Structures

ICS 541:

March 29, 2008

* -- Deletion from B+tree

(a) Simple case - no example
(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys

(d) Cases (b) or (c) at non-leaf

March 29, 2008 ICS 541: Index Structures

60

March 29, 2008

* Coalesce with sibling: Delete 50

A /_>
| oo oo
NI
I L
AN ~1 1

ICS 541: Index Structures

n=4

61

*-- Redistribute key: Delete 50 n=4

March 29, 2008 ICS 541: Index Structures

62

--- Non-leaf coalesce: Delete 37 n=4

o O o
AN B }\é\
TN
[N\
+—> > —1— L74 > —+—>
«ol 123 |29 |88 X
e il S

March 29, 2008 ICS 541: Index Structures 63

--- B+tree deletions in practice

- Often, coalescing is not implemented
= Too hard and not worth it!

March 29, 2008 ICS 541: Index Structures

64

* - Hashing

key — h(key)

March 29, 2008

_______________________________________ <key>

ICS 541: Index Structures

Buckets
~—(typically 1
disk block)

65

March 29, 2008

| -- Two alternatives ...

(1) key N h(key)

ICS 541: Index Structures

records

66

* ... -- Two alternatives

(2) key — h(key)

key 1

record

Index

= Alt (2) for “secondary” search key

March 29, 2008

ICS 541: Index Structures

67

-- Example hash function ...

= Key = X1 X2... Xn’
= Have b buckets

= h: add x1 +x2+.....

n byte character string

: compute sum modulo 6

March 29, 2008

ICS 541: Index Structures

68

... -- Example hash function

= This may not be best function ...

= Read Knuth Vol. 3 if you really need to select a good
function.

Good hash = Expected number of
function: keys/bucket is the
same for all buckets

March 29, 2008 ICS 541: Index Structures

69

-- Within a bucket

= Do we keep keys sorted?

= Yes
=« If CPU time critical, and

= Inserts/Deletes not too frequent

March 29, 2008 ICS 541: Index Structures

70

-- Example to illustrate inserts, overflows, deletes

h(K)

I

March 29, 2008 ICS 541: Index Structures

71

* ... -- Example to illustrate insert ...

INSERT: 0Ol 94
h(a) = 1 L
h(b) = 2 ;
h(c) = 1 Anmrams
h(d) = 0

3 |

March 29, 2008 ICS 541: Index Structures

Delete:
e

March 29, 2008

.I:

]
a
c |
]
-
-
A~ ~ ymaybe move
g - “g” up

ICS 541: Index Structures

... -- Example to illustrate delete ...

73

+ --- Rule of thumb

= Try to keep space utilization
between 50% and 80%

Utilization = # keys used
total # keys that fit

= If < 50%, wasting space

= If > 80%, overflows significant
dergends on how good hash
funttien is & on # keys/bucket

March 29, 2008 ICS 541: Index Structures

74

-- How do we cope with growth?

= Static hashing
= Overflows and reorganizations

= Very expensive

= Solution

= Dynamic hashing
= Extensible

= Linear

March 29, 2008 ICS 541: Index Structures

75

* -- Extensible hashing: two ideas ..

(a) Use 7of b bits output by hash function
b

«— —_

00110101
——

use /— grows over time....

h(K) —

March 29, 2008 ICS 541: Index Structures

* ... -- Extensible hashing: two ideas

(b) Use directory

hKLIT . : . to bucket

March 29, 2008 ICS 541: Index Structures

77

* --- Example: h(k) is 4 bits; 2 keys/bucket ...

1

i= 1.~ |oo01

Insert 1010 1100

March 29, 2008 ICS 541: Index Structures 78

... -—- Example: h(k) is 4 bits; 2 keys/bucket ...

N

March 29, 2008

00

01

10

11

Insert:
0111

ICS 541: Index Structures

79

N

... ——- Example: h(k) is 4 bits; 2 keys/bucket

0000 |2
/= 2 0001
00 o111 |2
01
15 N
" 1001
11 1001
1010 2004 2.
21040
Insert:
1001 1100 2
March 29, 2008 ICS 541: Index Structures 80

--- Extensible hashing: deletion

= Two option:
= No merging of blocks

= Merge blocks and cut directory if possible

March 29, 2008 ICS 541: Index Structures

81

---- Deletion example

= Run thru insert example in reverse!

March 29, 2008 ICS 541: Index Structures

82

-- Summary: Extensible hashing

(+) Can handle growing files
- No full reorganizations

@ Indirection

(Not bad if directory in memory)

(-) Directory doubles in size

(Now it fits, now it does not)

March 29, 2008 ICS 541: Index Structures

83

-- Summary: Extensible hashing

= Advantage
= No reorganization is needed

= One disk access per record

= Disadvantage

= Doubling bucket array is expensive
= The size of the bucket array may no longer fit into memory

= The number of bucket may be much bigger than the blocks

« Example: Splitting records can only be done in higher bits.

March 29, 2008 ICS 541: Index Structures

84

-- Linear hashing

= Another dynamic hashing scheme

= Two ideas:

(a) Use 7/ low order bits of hash

(b) File grows linearly

March 29, 2008

ICS 541: Index Structures

<—b—>

01110101

grows «—— Y

/

85

Example b=4 bits, /=2, 2 keys/bucket

Future
0000 | | 0101 T Blokets
1010 1111
00 01 10 11
m = 01 (max used block)
Rule | 'fh(L/]<m, then

March 29, 2008

look at bucket h(k)[i]
else, look at bucket h(k)[/] - 2/-1

ICS 541: Index Structures

86

*Example b=4 bits, /=2, 2 keys/bucket

—<
Futurer:]
0000 0101 1010 1111 |7 Sorets
1046~ | Ghaq. | | ||]
00 01 10 11
r___/
m =% (max used block)
1o
11

March 29, 2008 ICS 541: Index Structures 87

* Example Continued: How to grow beyond this?

0101

=23
0000 0401 1010 1111
0461
000 0 10 0 011
160 6% 110 111

March 29, 2008

m =11 (max used block)

—tT

101 —

ICS 541: Index Structures

0101

101

88

--- When do we expand file?

= Keep track of: # used slots
total # of slots

= If U > threshold then increase m
(and maybe /)

March 29, 2008 ICS 541: Index Structures

89

-- Summary: Linear Hashing

(+) Can handle growing files
- with less wasted space
- with no full reorganizations

() No indirection like extensible hashing

S Can still have overflow chains

March 29, 2008 ICS 541: Index Structures

90

-- Hashing Summary

Hashing
- How it works
- Dynamic hashing
- Extensible
- Linear

March 29, 2008 ICS 541: Index Structures

91

* -- Indexing Vs Hashing ...

= Hashing good for probes given key
e.g., SELECT ...
FROM R
WHERE R.A =5

March 29, 2008 ICS 541: Index Structures

92

* ... -- Indexing vs Hashing

= INDEXING (Including B Trees) good for
Range Searches:
e.g., SELECT
FROM R
WHERE R.A> 5

March 29, 2008 ICS 541: Index Structures

93

* - Reading list

= Chapter 13 of GUW
= B-tree (WebCt)

March 29, 2008

ICS 541: Index Structures

94

March 29, 2008

END

ICS 541: Index Structures

95

