

Index Structures

Chapter 13 of GUW

Objectives

- Different ways of organizing blocks
- What is the best way to organize record in blocks to minimize:
 - Query cost
 - Exact match
 - Partial match
 - Range
 - Join
 - Insertion cost
 - Deletion cost
 - Update cost
 - Storage cost

- Lecture outline

- Basic Concepts
- Index on Sequential files
- Secondary Indexes
- B-Trees
- Hash Tables

- Basic Concepts ...

... - Basic Concepts ...

... - Basic Concepts

Record pointers take more space than block pointers. Why?

- Indexes Sequential Files

- Sequential files
- Dense Index
- Sparse Index
- Multiple level of Index
- Index with Duplicate Search Keys
- Managing Indexes During Data Modification

-- Sequential Files

Sequential File

10	
20	

30	
40	

50	
60	

70	
80	

90	
100	

-- Dense Index

-- Sparse Index

-- Dense Vs Sparse Index: Example

Relation

- Relation R with 1,000,000 tuples
- A block of size 4096 bytes (4k)
- 10 R tuples per block
- Data space required => 1000000/10 * 4k = 400MB.

Dense index

- record size: 30 Bytes for search key + 8 bytes for record pointer
- Can fit 100 index records per block
- Dense index space = 1000000/100 * 4k = 40MB.
- Binary search cost log₂(10000) = 14 disk accesses at most
- Keeping blocks (1/2, ¼, ¾, 1/8, ...) in memory can lower disk access.

Sparse index

- 1000 index blocks = 4MB
- Binary search cost log₂(1000) = 10 disk accesses at most

-- Multiple level of Index

-- Contiguous sequential file

-- Sparse vs. Dense Tradeoff

Sparse

Less index space per record can keep more of index in memory

Dense

- Can tell if any record exists without accessing file
- Must be used for secondary index

- Index sequential file
- Search key (≠ primary key)
- Primary index (on Sequencing field)
- Secondary index
- Dense index (all Search Key values in)
- Sparse index
- Multi-level index

-- Duplicate keys ...

10	
10	

10	
20	

20	
30	

30	
30	

40	
45	

-- Duplicate keys ...

Dense index, one way to implement?

Dense index, better way?

... -- Duplicate keys

. -- Duplicate keys ...

... -- Duplicate keys

 Incase of primary index may point to <u>first</u> instance of each value only

-- Managing Indexes During Data Modification

- Deletion from Sparse Index
- Insertion into Sparse Index

--- Deletion from sparse index ...

--- Deletion from sparse index ...

- delete record 40

.. --- Deletion from sparse index ...

- delete record 30

... ---- Deletion from sparse index ...

- delete records 30 & 40

... --- Deletion from dense index ...

. --- Deletion from dense index

- delete record 30

--- Insertion, sparse index case ...

... --- Insertion, sparse index case ...

insert record 34

--- Insertion, sparse index case ...

- Variation:
 - insert new block (chained file)
 - update index

--- Insertion, sparse index case

- insert record 25

--- Insertion, dense index case

- Similar
- Often more expensive . . .

- Secondary Indexes

- Design of Secondary Indexes
- Duplicate Values and Secondary Indexes
- Applications of Secondary Indexes
- Indirection in Secondary Indexes

-- Design of Secondary Indexes ...

	Sequence field
30 50	
50	
20	
20 70	
[70]	
80	
40	
100	
10	
90	
60	

-- Design of Secondary Indexes ...

... -- Design of Secondary Indexes

- Lowest level is dense
 - Record pointers
- Other levels are sparse
 - Block pointers

20 10	
20 40	
10 40	
10 40	
30 40	

one option...

Problem:

excess overhead!

- disk space
- search time

another option...

Problem: variable size records in index!

<u>Indexes</u> Records

Name: primary EMP (name,dept,floor,...)

Dept: secondary

Floor: secondary

... ---Why "bucket" idea is useful ...

Query: Get employees in (Toy Dept) (2nd floor)

→Intersect toy bucket and 2nd Floor bucket to get set of matching EMP's. Used for text retrieval

.. ---Why "bucket" idea is useful

This idea used in <u>text information retrieval</u>.

-- Conventional indexes

Advantage:

- Simple
- Index is sequential file good for scans

Disadvantage:

- Inserts expensive, and/or
- Lose sequentiality & balance

--- Example

-- Next

- Another type of index
 - Give up on sequentiality of index
 - Try to get "balance"
- Btree
- Has Schemes

B+Tree Example

n=3

-- Sample non-leaf

-- Sample leaf node:

-- Size of Nodes

- n keys
- n + 1 Pointers
- Use at least

Non-leaf: $\lceil (n+1)/2 \rceil$ pointers

Leaf: $\lfloor (n+1)/2 \rfloor$ pointers to data

--- Example: n = 3

tree of order *n*

- (1) All leaves at same lowest level (balanced tree)
- Pointers in leaves point to records except for "sequence pointer"

-- Insert into B+tree

- (a) simple case
 - space available in leaf
- (b) leaf overflow
- (c) non-leaf overflow
- (d) new root

--- Insert key = 32

n=3

--- Insert key = 7

n=3

--- New root, insert 45

n=3

-- Deletion from B+tree

- (a) Simple case no example
- (b) Coalesce with neighbor (sibling)
- (c) Re-distribute keys
- (d) Cases (b) or (c) at non-leaf

--- Coalesce with sibling: Delete 50

Redistribute key: Delete 50

--- Non-leaf coalesce: Delete 37

n=4

--- B+tree deletions in practice

- Often, coalescing is <u>not</u> implemented
 - Too hard and not worth it!

- Hashing

-- Two alternatives ...

Alt (2) for "secondary" search key

-- Example hash function ...

- Key = ' $x_1 x_2 ... x_n$ ' *n* byte character string
- Have b buckets
- h: add x₁ + x₂ + X_n
 - compute sum modulo b

... -- Example hash function

- This may not be best function ...
- Read Knuth Vol. 3 if you really need to select a good function.

-- Within a bucket

- Do we keep keys sorted?
 - Yes
 - if CPU time critical, and
 - Inserts/Deletes not too frequent

-- Example to illustrate inserts, overflows, deletes

... -- Example to illustrate insert ...

INSERT:

$$h(a) = 1$$

$$h(b) = 2$$

$$h(c) = 1$$

$$h(d) = 0$$

$$h(e) = 1$$

... -- Example to illustrate delete ...

Delete:

e

f

C

--- Rule of thumb

Try to keep space utilization
 between 50% and 80%
 Utilization = # keys used total # keys that fit

- If < 50%, wasting space
- If > 80%, overflows significant depends on how good hash function is & on # keys/bucket

-- How do we cope with growth?

- Static hashing
 - Overflows and reorganizations
 - Very expensive
- Solution
 - Dynamic hashing
 - Extensible
 - Linear

-- Extensible hashing: two ideas ...

(a) Use *i* of *b* bits output by hash function

... -- Extensible hashing: two ideas

.. --- Example: h(k) is 4 bits; 2 keys/bucket ...

March 29, 2008 ICS 541: Index Structures

79

... --- Example: h(k) is 4 bits; 2 keys/bucket

80

--- Extensible hashing: deletion

- Two option:
 - No merging of blocks
 - Merge blocks and cut directory if possible

---- Deletion example

Run thru insert example in reverse!

-- Summary: Extensible hashing

+ Can handle growing files- No full reorganizations

- Indirection(Not bad if directory in memory)
- Directory doubles in size

 (Now it fits, now it does not)

-- Summary: Extensible hashing

Advantage

- No reorganization is needed
- One disk access per record

Disadvantage

- Doubling bucket array is expensive
- The size of the bucket array may no longer fit into memory
- The number of bucket may be much bigger than the blocks
 - Example: Splitting records can only be done in higher bits.

- Another dynamic hashing scheme
- Two ideas:
 - (a) Use i low order bits of hash

(b) File grows linearly

Rule If $h(k)[i] \le m$, then look at bucket h(k)[i] else, look at bucket $h(k)[i] - 2^{i-1}$

Example b=4 bits, i=2, 2 keys/bucket

Example Continued: How to grow beyond this?

$$i = 23$$

--- When do we expand file?

Keep track of:
used slots
total # of slots

If U > threshold then increase m
 (and maybe i)

-- Summary: Linear Hashing

- Can handle growing files
 - with less wasted space
 - with no full reorganizations
- No indirection like extensible hashing

Can still have overflow chains

-- Hashing Summary

Hashing

- How it works
- Dynamic hashing
 - Extensible
 - Linear

Hashing good for probes given key e.g., SELECT ...

> FROM R WHERE R.A = 5

... -- Indexing vs Hashing

INDEXING (Including B Trees) good for Range Searches:

e.g., SELECT

FROM R WHERE R.A > 5

- Reading list

- Chapter 13 of GUW
- B-tree (WebCt)

END