
March 29, 2008 ICS 541: Rep. data elements 1

Representing Data Elements

Chapter 12 of GUW

March 29, 2008 ICS 541: Rep. data elements 2

Objectives

To understand:

How SQL data types are represented as fields

How tuples are represented as records

How records are organized in blocks of memory

How to handle variable size records

How to cope with a record when it size changes as a result of
modifying some of its fields

March 29, 2008 ICS 541: Rep. data elements 3

- Lecture outline

Representing SQL data types
Fixed-length Records
Representing Block and Record Addresses
Variable-length Records
Record modifications
Summary
References

March 29, 2008 ICS 541: Rep. data elements 4

- Representing SQL data types

Representing:

Numbers

Strings

Dates and times

Bits

Boolean

Enumerated types

March 29, 2008 ICS 541: Rep. data elements 5

-- Representing Numbers

INTEGER:
Represented as Bit strings
2 to 4 bytes long

FLOAT
Represented as Bit strings
4 to 8 bytes long

March 29, 2008 ICS 541: Rep. data elements 6

-- Representing Strings

Fixed sized:
The SQL type CHAR(n)

Sized n bytes
Example: A ASCII code A 8 bits

Filled with special pad character if assigned less than n characters.

Variable sized
The SQL type VARCHAR(n) == (VARCHAR2(n) of Oracle)

Can hold m <= n characters
Sized m+1 bytes, if m < 256
Represented as:

Length plus content
Null-terminated string

March 29, 2008 ICS 541: Rep. data elements 7

-- Representing Dates and Times

Date

Fixed-length character string as CHAR(n)

Time

May include fractions of a second

Represented as:

variable-sized string as VARCHAR(n) which is of limited precision;

True variable-length value as will be discussed later on the
chapter.

March 29, 2008 ICS 541: Rep. data elements 8

-- Representing BITS, BOOLEAN, Enumerated types

BITS(n)
ROOF(n/8) bytes

BOOLEAN
TRUE as 00000000
FALSE as 11111111

Enumerated types
Typically represented as integers 0, 1, 2, … n.
Example:

{Sat, Sun, Mon, Tue, Wed, Thu, Fri} can be represented as
{00000001, 00000010, 00000011, …, 00000110}

March 29, 2008 ICS 541: Rep. data elements 9

- Fixed-Length Records

Records and Database Schema

Building Fixed-Length Records

Record Headers

Packing Fixed-Length Records into Blocks

March 29, 2008 ICS 541: Rep. data elements 10

-- Records and Database Schema

Fields are grouped together to form records

A database record must conform to a schema

The schema includes:

Names and types of each field in the record

Their offset within the record

March 29, 2008 ICS 541: Rep. data elements 11

-- Building Fixed-Length Records

CREATE TABLE MovieStar (
name CHAR(30),
address VARCHAR(255),
gender CHAR(1),
birthDate DATE); // assume takes 10 bytes

Thus, a record of MovieStar takes 30+256+1 + 10 = 297 bytes

Some data types or for performance reasons: each field or record
starts at an address which is a mulltiple of 4 or 8.

Name address

gender

birthDate

0 32 288 292 304

March 29, 2008 ICS 541: Rep. data elements 12

-- Record Header

Including data a record contains a header which may have:

The record schema, more likely a pointer where the DBMS
stores the schema the record.

To check, the types pf the attributes and their constraints.

The record length

Can be computed but done for performance reason

Timestamps:
Time the record was last modified

Time the record was last read.

Used for transaction management

March 29, 2008 ICS 541: Rep. data elements 13

-- Packing Fixed-Length Records into Blocks

A number of records are stored in a block.

Each block can have an optional header which holds:

Links to other blocks

The role of the block (E.g. Data or index block)

The name of the object to which the block belong

A “directory” giving the offset of each record in the block.

Block ID

Timestamp: Indicating the time of the block’s last modification and/or
accessed.

Header Rec1 Rec2 Rec3 Recn

March 29, 2008 ICS 541: Rep. data elements 14

- Representing Block and Record Addresses …

Physical Address of a record
Host address
Disk ID
Cylinder number
Track number
Block number
Record offset within the block

Logical address
Each block or record has a
logical address.
A table is need to map logical
to physical

L P
Logical address

Physical address

March 29, 2008 ICS 541: Rep. data elements 15

… - Representing Block and Record Addresses

R4 R3 R2 R1

Header

offset

Unused

A block with a table of offsets telling the position of each record in the block.

March 29, 2008 ICS 541: Rep. data elements 16

-- Pointer Swizzling …

Data has two forms of addresses
Database address:

Its address in the disk
Memory address:

Its address in the memory.

When a data moves from disk to memory a transilation table
is used to map its disk address to its memory address.

A bit can be used as indicator of the type of address: DBA or
MA

DBA MA

DB address (DBA)

Memory address (MA)

March 29, 2008 ICS 541: Rep. data elements 17

… -- Pointer Swizzling …

Disk Memory

Block 1

swizzled

Read to Memory

Block 2

March 29, 2008 ICS 541: Rep. data elements 18

… -- Pointer Swizzling …

Strategies when to swizzle:

Automatic swizzling
As soon as the block comes to memory.

Swizzling on demand
Swizzle a particular address when its is requested

No swizzling
Keep pointers in their DBA form.
Use the translation table

Programmer control of swizzling
Explicitly done by the programmer.

March 29, 2008 ICS 541: Rep. data elements 19

… -- Pointer Swizzling …

When returning blocks to disk:

Pointers within that block must be unswizzled

This is done using the DBA in the address translation table.

Some blocks are pinned

They can not be written back to disk until unpinned.

Pinning is done for performance reasons

Make sure not to follow dangling pointers. So appropriate clean up
is needed.

If block B is written back to disk. All pointers pointing to block be must
be unswizzled.

March 29, 2008 ICS 541: Rep. data elements 20

- Variable-Length Records

Reasons why records not always have the same size:

Fields of variable length. Attribute content vary in size.

Repeating fields. An attribute that appear several times, but
how many times is not specified by the schema. (Not allowed
in Relational)

Records of variable format. When different tuples in a relation
have different sets of attributes. E.g., if many attributes have
no content. (Not allowed in relational)

Enormous fields. Data like movies and pictures in the relation.
The record may not fit into one block.

March 29, 2008 ICS 541: Rep. data elements 21

-- Fields of Variable Length

When a field has variable size we still have to be able to find all
fields in the record. Since the offset cannot be read from the
relation schema some extra information is stored in the record
header.

Example of how it can be solved:

Store fixed length fields first in the record.

Store the total size of the record.

Store offsets for variable sized fields (except the first).

Frequently null fields:

Are represented by null pointer

Keep them at the end of the record

March 29, 2008 ICS 541: Rep. data elements 22

-- Spanned records

A record is called spanned record if it is split between
two or more blocks.

Reasons for spanned records:
Space utilization.
Records larger then block.

For each fragment of a record extra information on
where to find next and previous fragment is needed.

March 29, 2008 ICS 541: Rep. data elements 23

-- BLOBS

Binary, Large OBjectS = BLOBS

BLOBS can be images, movies, audio files and other very large values
that can be stored in files.

Storing BLOBS

Stored in several blocks.

Preferable to store them consecutively on a cylinder or multiple disks for
efficient retrieval.

Retrieving BLOBS

A client retrieving a 2 hour movie may not want it all at the same time.

Retrieving a specific part of the large data requires an index structure to
make it efficient. (Example: An index by seconds on a movie BLOB.)

March 29, 2008 ICS 541: Rep. data elements 24

- Record Modification …

We will look at three types of updates:
Insertions of new tuples
Deletions of tuples
Tuple updates

What problems may arise when updates are performed
on the database?

Think of the different situations where we have:
fixed length vs. variable length tuples
no order vs. sorted tuples

March 29, 2008 ICS 541: Rep. data elements 25

… - Record Modification

Insert
No order: No problem, just find a block with enough space or use a
new block.
Fixed order: May be a problem if there is not enough room in the
correct block. Solutions:

Find space in nearby block and rearrange.
Create a overflow block.

Delete
Pack data in the block to prepare for new inserts. Remove overflow
blocks. if possible. Leave a tombstone if there may be pointers to the
record.

Update
Fixed length: No problem.
Variable length: Same as for insert and delete. (But no tombstones.)

March 29, 2008 ICS 541: Rep. data elements 26

- Summary

Fields
organizing bits

Numbers, Date, Bollean, etc
Field terminators
Counters

Records
organizing fields

header
Fixed Vs Variable
null
Modification
Spanned

Blocks
organizing records

Header

Files
arranging blocks (to be discussed in the next chapter)

March 29, 2008 ICS 541: Rep. data elements 27

- References

Chapter 12 of GUW.

March 29, 2008 ICS 541: Rep. data elements 28

END

