
March 29, 2008 ICS 541: RA & SQL 1

Recap – Relational languages

March 29, 2008 ICS 541: RA & SQL 2

Objectives

To revise Relational Algebra and SQL.

March 29, 2008 ICS 541: RA & SQL 3

- Input relations

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

Student CID Title

ICS 102 Java

ICS 202 Data structures

ICS 434 Advanced Databases

ICS 334 Databases

ICS 431 Operating Systems

…… ……

Course

SID CID

111 ICS 102

222 ICS 434

222 ICS 431

333 ICS 334

333 ICS 431

444 ICS 102

….. ….

Enroll

March 29, 2008 ICS 541: RA & SQL 4

- Lecture outline …

Relational Algebra
Relational Operators
Selection
Projection
Cross product
Join
Natural Join
Union
Difference
Intersection
Renaming
Summary

SQL

March 29, 2008 ICS 541: RA & SQL 5

- Relational algebra operators

Relational algebra is notation for operations on relations, like constructing
new relations and defining queries on relations.

Very important for query optimization.

Core set of operators:
Selection, projection, cross product, union, difference, and, renaming

Additional, derived operators:
Join, natural join, intersection, etc.

RelOp

RelOp

March 29, 2008 ICS 541: RA & SQL 6

- Selection …

Input: a table R

Notation: σp (R)
p is called a selection condition/predicate

Purpose: filter rows according to some criteria

Output: same columns as R, but only rows of R that
satisfy p

March 29, 2008 ICS 541: RA & SQL 7

… - Selection …

Example
Students with GPA higher than 3.0

σGPA > 3.0 (Student)

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

SID name YOB GPA

111 Mustafa 1985 3.2

444 Lutfi 1984 3.5

…. …. …. ….

σGPA > 3.0

March 29, 2008 ICS 541: RA & SQL 8

… - Selection

Selection predicate in general can include any column
of R, constants, comparisons such as =, ≤, etc., and
Boolean connectives V, Λ, and ¬

Example: List all A students under 18 or over 20

σGPA ≥ 4.0 Λ (age < 18 V age > 20) (Student)

But you must be able to evaluate the predicate over a
single row

Example: student with the highest GPA

σGPA ≥ all GPA (Student)

March 29, 2008 ICS 541: RA & SQL 9

- Projection …

Input: a table R

Notation: ∏L (R)
L is a list of columns in R

Purpose: select columns to output

Output: same rows, but only the columns in L.
Duplicate output rows are removed.

March 29, 2008 ICS 541: RA & SQL 10

… - Projection

Example:

ID’s and names of all students

∏SID, name (Student)

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

SID name

111 Mustafa

222 Ali

333 Ahmed

444 Lutfi

…. ….

∏SID, name

March 29, 2008 ICS 541: RA & SQL 11

- Cross product …

Input: two tables R and S

Notation: R × S

Purpose: pairs rows from two tables

Output: for each row r in R and each row s in S, output
a row rs (concatenation of r and s)

The ordering of columns in a table is considered unimportant
(as is the ordering of rows)

That means cross product is commutative, i.e., R × S = S × R
for any R and S

March 29, 2008 ICS 541: RA & SQL 12

… - Cross product

Example: Student × Enroll

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

Student
SID CID

111 ICS 102

222 ICS 434

222 ICS 431

333 ICS 334

333 ICS 431

444 ICS 102

….. ….

Enroll

X

SID Name Age GPA SID CID

111 Mustafa 17 3.2

3.2

3.2

3.2

ICS 102

111 Mustafa 17

111

222

222

333

ICS 434

111 Mustafa 17 ICS 431

111 Mustafa 17 ICS 334

…. …. …. ….

March 29, 2008 ICS 541: RA & SQL 13

- Join

Input: two tables R and S

Notation: R p S
p is called a join condition/predicate

Purpose: relate rows from two tables according to some
criteria

Output: for each row r in R and each row s in S, output
a row rs if r and s satisfy

Shorthand for σp (R × S)

March 29, 2008 ICS 541: RA & SQL 14

… - Join

Example: Info about students, plus CID’s of their courses
Student Student.SID = Enroll.SID Enroll

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

Student SID CID

111 ICS 102

222 ICS 434

222 ICS 431

333 ICS 334

333 ICS 431

444 ICS 102

….. ….

Enroll

SID Name Age GPA SID CID

111 Mustafa 17 3.2

2.8

2.8

2.5

ICS 102

222 Ali 17

111

222

222

333

ICS 434

222 Ali 17 ICS 431

333 Ahmed 22 ICS 334

…. …. …. ….

Student.SID = Enroll.SID

March 29, 2008 ICS 541: RA & SQL 15

- Natural Join

Input: two tables R and S

Notation: R S

Purpose: relate rows from two tables, and
Enforce equality on all common attributes
Eliminate one copy of common attributes

Shorthand for πL (R p S)
L is the union of all attributes from R and S, with duplicates
removed
p equates all attributes common to R and S

March 29, 2008 ICS 541: RA & SQL 16

… - Natural Join

Example: Info about students, plus CID’s of their courses
Student Enroll

SID name Age GPA

111 Mustafa 17 3.2

222 Ali 17 2.8

333 Ahmed 22 2.5

444 Lutfi 20 3.5

…. …. …. ….

Student SID CID

111 ICS 102

222 ICS 434

222 ICS 431

333 ICS 334

333 ICS 431

444 ICS 102

….. ….

Enroll

SID Name Age GPA CID

111 Mustafa 17 3.2

2.8

2.8

2.5

ICS 102

222 Ali 17 ICS 434

222 Ali 17 ICS 431

333 Ahmed 22 ICS 334

…. …. …. ….

March 29, 2008 ICS 541: RA & SQL 17

- Union

Input: two tables R and S

Notation: R U S

R and S must have identical schema

Output:

Has the same schema as R and S

Contains all rows in R and all rows in S, with duplicates
eliminated

March 29, 2008 ICS 541: RA & SQL 18

- Difference

Input: two tables R and S

Notation: R − S

R and S must have identical schema

Output:

Has the same schema as R and S

Contains all rows in R that are not found in S

March 29, 2008 ICS 541: RA & SQL 19

- Intersection

Input: two tables R and S

Notation: R ∩ S
R and S must have identical schema

Output:
Has the same schema as R and S
Contains all rows that are in both R and S

Shorthand for R − (R − S)

Also equivalent to S − (S − R)

And to R S

March 29, 2008 ICS 541: RA & SQL 20

- Renaming

Input: a table R

Notation: ρS (R), or ρS(A1, A2, …) (R)

Purpose: rename a table and/or its columns

Output: a renamed table with the same rows as R

Used to

Avoid confusion caused by identical column names

Create identical columns names for natural joins

March 29, 2008 ICS 541: RA & SQL 21

- Summary of Operators

Core

Selection: σp (R)

Projection: πL (R)
Cross product: R × S
Union: R U S
Difference: R − S

Renaming: ρ S(A1, A2, …) (R)

Derived
Join: R p S
Natural join: R S
Intersection: R ∩ S
Many more: Semijoin, anti-semijoin, quotient, aggregation, …

March 29, 2008 ICS 541: RA & SQL 22

SQL

March 29, 2008 ICS 541: RA & SQL 23

Lecture Outline

Basic CREATE/DROP TABLE

INSERT

DELETE

UPDATE

SELECT

Set and bag operations

Aggregation and grouping

NULL’s

SQL Constraints

Others

March 29, 2008 ICS 541: RA & SQL 24

- Definition

SQL: Structured Query Language

Pronounced “S-Q-L” or “sequel”

The standard query language support by most
commercial DBMS

March 29, 2008 ICS 541: RA & SQL 25

- Creating and dropping tables

CREATE TABLE table_name (…, column_namei column_typei, …);
DROP TABLE table_name;
Examples

create table Student (SID integer, name varchar(30), email
varchar(30), age integer, GPA float);
create table Course (CID char(10), title varchar(100));
create table Enroll (SID integer, CID char(10));
drop table Student;
drop table Course;
drop table Enroll;

everything from -- to the end of the line is ignored.
SQL is insensitive to white space.
SQL is case insensitive (e.g., ...Course... is equivalent to
...COURSE...)

March 29, 2008 ICS 541: RA & SQL 26

- INSERT

Insert one row

INSERT INTO Enroll VALUES (111, ’ICS334’);

Student 111 takes ICS 334

Insert the result of a query

INSERT INTO Enroll
(SELECT SID, ’ICS334’ FROM Student
WHERE SID NOT IN (SELECT SID FROM Enroll
WHERE CID = ’ICS334’));

Force everybody to take ICS 334

March 29, 2008 ICS 541: RA & SQL 27

- DELETE

Delete everything

DELETE FROM Enroll;

Delete according to a WHERE condition

Example: Student 111 drops ICS 334

DELETE FROM Enroll
WHERE SID = 111 AND CID = ’ICS334’;

Example: Drop students with GPA lower than 1.0 from all ICS classes

DELETE FROM Enroll
WHERE SID IN (SELECT SID FROM Student
WHERE GPA < 1.0)
AND CID LIKE ’ICS%’;

March 29, 2008 ICS 541: RA & SQL 28

- Update

Example: Student 111 changes name to “Hazem” and GPA to 3.0

UPDATE Student
SET name = ’Barney’, GPA = 3.0
WHERE SID = 111;

Example: Assign every student average GPA

UPDATE Student
SET GPA = (SELECT AVG(GPA) FROM Student);

But update of every row causes average GPA to change!

Average GPA is computed over the old Student table

March 29, 2008 ICS 541: RA & SQL 29

- Select

SELECT * FROM Student;

Single-table query

WHERE clause is optional

* is a short hand for “all columns”

Equivalent to: σSID,name, age, GPA (Student)

March 29, 2008 ICS 541: RA & SQL 30

-- Selection and Projection

Name of students under 18

SELECT name
FROM Student
WHERE age < 18;

When was Mustafa born?

SELECT 2006 – age
FROM Student
WHERE name = ’Mustafa’;

SELECT list can contain expressions
Can also use built-in functions such as SUBSTR, ABS, etc.

String literals (case sensitive) are enclosed in single quotes

March 29, 2008 ICS 541: RA & SQL 31

-- Join

SID’s and name’s of students taking courses with the word
“Database” in their titles

SELECT Student.SID, Student.name
FROM Student, Enroll, Course
WHERE Student.SID = Enroll.SID
AND Enroll.CID = Course.CID
AND title LIKE ’%Database%’;

LIKE matches a string against a pattern
% matches any sequence of 0 or more characters

Okay to omit table_name in table_name.column_name if
column_name is unique

March 29, 2008 ICS 541: RA & SQL 32

-- rename

SID’s of students who take at least two courses

SELECT e1.SID AS SID
FROM Enroll AS e1, Enroll AS e2
WHERE e1.SID = e2.SID
AND e1.CID <> e2.CID;

AS keyword is completely optional

March 29, 2008 ICS 541: RA & SQL 33

-- A more complicated example

Titles of all courses that Ali and Mustafa are taking together

SELECT c.title
FROM Student sb, Student sl, Enroll eb, Enroll el, Course c
WHERE sb.name = ’Ali’ AND sl.name = ’Mustafa’
AND eb.SID = sb.SID AND el.SID = sl.SID
AND eb.CID = el.CID
AND eb.CID = c.CID;

Tip: Write the FROM clause first, then WHERE, and then SELECT

March 29, 2008 ICS 541: RA & SQL 34

-- Set versus bag semantics

Set versus bag semantics

Set
No duplicates
Relational model and algebra use set semantics

Bag
Duplicates allowed
Number of duplicates is significant
SQL uses bag semantics by default

March 29, 2008 ICS 541: RA & SQL 35

-- Set verses bag example

SID

111

222

333

444

…..

SID CID

111 ICS 102

222 ICS 434

222 ICS 431

333 ICS 334

333 ICS 431

444 ICS 102

….. ….

Enroll
SID

111

222

222

333

333

444

…..

Select SID
From EnrollπSID (Enroll)

Set
Bag

March 29, 2008 ICS 541: RA & SQL 36

-- A case for bag semantics

Efficiency
Saves time of eliminating duplicates

Which one is more useful?

πGPA (Student)
SELECT GPA FROM Student;
The first query just returns all possible GPA’s
The second query returns the actual GPA distribution

Besides, SQL provides the option of set semantics with
DISTINCT keyword

March 29, 2008 ICS 541: RA & SQL 37

-- Operational semantics of SELECT

SELECT [DISTINCT] E1, E2, …, En
FROM R1, R2, …, Rm
WHERE condition;

For each t1 in R1:
For each t2 in R2: … …

For each tm in Rm:
If condition is true over t1, t2, …, tm:

Compute and output E1, E2, …, En

If DISTINCT is present eliminate duplicate rows in output

t1, t2, …, tm are often called tuple variables

March 29, 2008 ICS 541: RA & SQL 38

-- SQL set and bag operations

UNION, EXCEPT, INTERSECT
Set semantics
Exactly like set U, −, and ∩ in relational algebra

UNION ALL, EXCEPT ALL, INTERSECT ALL
Bag semantics
Think of each row as having an implicit count (the number of
times it appears in the table)
Bag union: sum up the counts from two tables
Bag difference: proper-subtract the two counts
Bag intersection: take the minimum of the two counts

March 29, 2008 ICS 541: RA & SQL 39

-- Examples of bag operations

Bag1

Fruit

Apple

Fruit

Apple

Orange

Fruit

Apple

Apple

Orange

Bag1 INTERSECT ALL Bag2

Bag1 UNION ALL Bag2

Fruit

Apple

Apple

Orange

Apple

Orange

Orange

Bag2

Fruit

Apple

Orange

Orange

Bag1 EXCEPT ALL Bag2

March 29, 2008 ICS 541: RA & SQL 40

- Aggregates

Standard SQL aggregate functions: COUNT, SUM, AVG,
MIN, MAX

Example: number of students under 18, and their
average GPA

SELECT COUNT(*), AVG(GPA)
FROM Student
WHERE age < 18;

COUNT(*) counts the number of rows

March 29, 2008 ICS 541: RA & SQL 41

-- GROUP BY

SELECT … FROM … WHERE …
GROUP BY list_of_columns;

Example: find the average GPA for each age group

SELECT age, AVG(GPA)
FROM Student
GROUP BY age;

March 29, 2008 ICS 541: RA & SQL 42

-- Operational semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

Compute FROM (×)

Compute WHERE (σ)

Compute GROUP BY: group rows according to the values of
GROUP BY columns

Compute SELECT for each group (π)

One output row per group in the final output

An aggregate with no GROUP BY clause represent a special
case where all rows go into one group

March 29, 2008 ICS 541: RA & SQL 43

-- Restriction on SELECT

If a query uses aggregation/GROUP BY, then every
column referenced in SELECT must be either

Aggregated, or

A GROUP BY column

This restriction ensures that any SELECT expression
produces only one value for each group

March 29, 2008 ICS 541: RA & SQL 44

-- Examples of invalid queries

SELECT SID, age FROM Student GROUP BY age;

Recall there is one output row per group

There can be multiple SID values per group

SELECT SID, MAX(GPA) FROM Student;

Recall there is only one group for an aggregate query

with no GROUP BY clause

There can be multiple SID values

Wishful thinking (that the output SID value is the one

associated with the highest GPA) does NOT work

March 29, 2008 ICS 541: RA & SQL 45

-- HAVING

Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

SELECT … FROM … WHERE … GROUP BY …
HAVING condition;

Compute FROM (×)
Compute WHERE (σ)
Compute GROUP BY: group rows according to the values of
GROUP BY columns
Compute HAVING (another σ over the groups)
Compute SELECT (π) for each group that passes HAVING

March 29, 2008 ICS 541: RA & SQL 46

--- HAVING example

Find the average GPA for each age group over 10

SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING age > 10;

Can be written using WHERE without table expressions

List the average GPA for each age group with more than a
hundred students

SELECT age, AVG(GPA)
FROM Student
GROUP BY age
HAVING COUNT(*) > 100;

Can be written using WHERE and table expressions

March 29, 2008 ICS 541: RA & SQL 47

- Rules for NULL’s

When we operate on a NULL and another value (including
another NULL) using +, –, etc., the result is NULL

Aggregate functions ignore NULL, except COUNT(*) (since it
counts rows)

When we compare a NULL with another value (including
another NULL) using =, >, etc., the result is UNKNOWN.

WHERE and HAVING clauses only select rows for output if the
condition evaluates to TRUE. UNKNOWN is insufficient

March 29, 2008 ICS 541: RA & SQL 48

-- Unfortunate consequences

SELECT AVG(GPA) FROM Student;

SELECT SUM(GPA)/COUNT(*) FROM Student;

Not equivalent

Although AVG(GPA)= SUM(GPA)/COUNT(GPA), still

SELECT * FROM Student;

SELECT * FROM Student WHERE GPA = GPA;

Not equivalent

Be careful: NULL breaks many equivalences

March 29, 2008 ICS 541: RA & SQL 49

-- Another problem

Example: Who has NULL GPA values?

SELECT * FROM Student WHERE GPA = NULL;
Does not work; never returns anything

(SELECT * FROM Student)
EXCEPT ALL
(SELECT * FROM Student WHERE GPA = GPA)

Works, but ugly

Introduced built-in predicates IS NULL and IS NOT NULL

SELECT * FROM Student WHERE GPA IS NULL;

March 29, 2008 ICS 541: RA & SQL 50

- SQL constraints

NOT NULL
Key
Referential integrity (foreign key)
CHECK

March 29, 2008 ICS 541: RA & SQL 51

-- Example

CREATE TABLE Student
(SID INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
email VARCHAR(30) UNIQUE,
age INTEGER,
GPA FLOAT);

CREATE TABLE Course
(CID CHAR(10) NOT NULL PRIMARY KEY,
title VARCHAR(100) NOT NULL);

CREATE TABLE Enroll
(SID INTEGER NOT NULL,
CID CHAR(10) NOT NULL,
PRIMARY KEY(SID, CID));

March 29, 2008 ICS 541: RA & SQL 52

- Others

Subqueries
Simple:

IN

Quantified
ALL
ANY

Coorelated
EXISTS

Views
Triggers
Indexes

March 29, 2008 ICS 541: RA & SQL 53

END of ICS 334

