
March 29, 2008 Operating Systems: The course 1

Distributed Operating Systems Issues
Chapters 16 and 18

March 29, 2008 Operating Systems: The course 2

Objectives

To provide a high-level overview of distributed systems

To discuss the general structure of distributed operating
systems

To describe various methods for achieving mutual exclusion in
a distributed system

To present schemes for handling deadlock prevention,
deadlock avoidance, and deadlock detection in a distributed
system

To present distributed algorithms used in case of failure

March 29, 2008 Operating Systems: The course 3

Outline

Motivation (16.1)

Types of Distributed Operating Systems 16.2)

Event Ordering (18.1)

Mutual Exclusion (18.2)

Deadlock Handling (18.5)

Election Algorithms (18.6)

March 29, 2008 Operating Systems: The course 4

- Motivation …

Distributed system is collection of loosely coupled processors
interconnected by a communications network

Processors variously called nodes, computers, machines, hosts
Site is location of the processor

March 29, 2008 Operating Systems: The course 5

… - Motivation

Reasons for distributed systems

Resource sharing
sharing and printing files at remote sites
processing information in a distributed database
using remote specialized hardware devices

Computation speedup – load sharing

Reliability – detect and recover from site failure, function
transfer, reintegrate failed site

Communication – message passing

March 29, 2008 Operating Systems: The course 6

- Types of Distributed Operating Systems …

Network Operating Systems
Users are aware of multiplicity of machines. Access to resources of
various machines is done explicitly by:

Remote logging into the appropriate remote machine (telnet, ssh)
Transferring data from remote machines to local machines, via the
File Transfer Protocol (FTP) mechanism

Distributed Operating Systems
Users not aware of multiplicity of machines

Access to remote resources similar to access to local resources
Data Migration – transfer data by transferring entire file, or transferring
only those portions of the file necessary for the immediate task
Computation Migration – transfer the computation, rather than the
data, across the system

March 29, 2008 Operating Systems: The course 7

… - Distributed-Operating Systems

Process Migration – execute an entire process, or parts
of it, at different sites

Load balancing – distribute processes across network to even
the workload
Computation speedup – subprocesses can run concurrently on
different sites
Hardware preference – process execution may require
specialized processor
Software preference – required software may be available at
only a particular site
Data access – run process remotely, rather than transfer all
data locally

March 29, 2008 Operating Systems: The course 8

- Event Ordering

Happened-before relation (denoted by →)

If A and B are events in the same process, and A was executed
before B, then A → B

If A is the event of sending a message by one process and B is
the event of receiving that message by another process, then A
→ B

If A → B and B → C then A → C

March 29, 2008 Operating Systems: The course 9

-- Relative Time for Three Concurrent Processes

March 29, 2008 Operating Systems: The course 10

-- Implementation of →

Associate a timestamp with each system event
Require that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B

Within each process Pi a logical clock, LCi is associated
The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process

Logical clock is monotonically increasing

A process advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock
If the timestamps of two events A and B are the same, then the
events are concurrent

We may use the process identity numbers to break ties and to create a
total ordering

March 29, 2008 Operating Systems: The course 11

- Distributed Mutual Exclusion (DME)

Assumptions
The system consists of n processes; each process Pi resides at a
different processor
Each process has a critical section that requires mutual exclusion

Requirement
If Pi is executing in its critical section, then no other process Pj is
executing in its critical section

We present two algorithms to ensure the mutual exclusion
execution of processes in their critical sections

Centralized approach
Fully distributed approach

March 29, 2008 Operating Systems: The course 12

-- DME: Centralized Approach

One of the processes in the system is chosen to coordinate the
entry to the critical section
A process that wants to enter its critical section sends a request
message to the coordinator
The coordinator decides which process can enter the critical
section next, and its sends that process a reply message
When the process receives a reply message from the
coordinator, it enters its critical section
After exiting its critical section, the process sends a release
message to the coordinator and proceeds with its execution
This scheme requires three messages per critical-section entry:

request
reply
release

March 29, 2008 Operating Systems: The course 13

-- DME: Fully Distributed Approach …

When process Pi wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (Pi, TS) to all other processes in the system

When process Pj receives a request message, it may reply
immediately or it may defer sending a reply back

When process Pi receives a reply message from all other
processes in the system, it can enter its critical section

After exiting its critical section, the process sends reply
messages to all its deferred requests

March 29, 2008 Operating Systems: The course 14

… -- DME: Fully Distributed Approach

The decision whether process Pj replies immediately to a request(Pi,
TS) message or defers its reply is based on three factors:

If Pj is in its critical section, then it defers its reply to Pi

If Pj does not want to enter its critical section, then it sends a
reply immediately to Pi

If Pj wants to enter its critical section but has not yet entered it,
then it compares its own request timestamp with the timestamp
TS

If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first)
Otherwise, the reply is deferred

March 29, 2008 Operating Systems: The course 15

-- Desirable Behavior of Fully Distributed Approach

Freedom from Deadlock is ensured

Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering

The timestamp ordering ensures that processes are served in a
first-come, first served order

The number of messages per critical-section entry is

2 x (n – 1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently.

March 29, 2008 Operating Systems: The course 16

-- Three Undesirable Consequences

The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex

If one of the processes fails, then the entire scheme collapses
This can be dealt with by continuously monitoring the state of
all the processes in the system

Processes that have not entered their critical section must pause
frequently to assure other processes that they intend to enter the
critical section

This protocol is therefore suited for small, stable sets of
cooperating processes

March 29, 2008 Operating Systems: The course 17

-- Token-Passing Approach

Circulate a token among processes in system
Token is special type of message
Possession of token entitles holder to enter critical section

Processes logically organized in a ring structure

Algorithm similar to Chapter 6 algorithm 1 but token substituted
for shared variable

Unidirectional ring guarantees freedom from starvation

Two types of failures
Lost token – election must be called
Failed processes – new logical ring established

March 29, 2008 Operating Systems: The course 18

- Deadlock Handling

The following 3 deadlock algorithms presented in
Chapter 7 can be used with distributed systems,
provided that appropriate modifications are made

Avoidance

Banker’s Algorithm

Prevention

Detection and recovery

March 29, 2008 Operating Systems: The course 19

-- Deadlock Avoidance

Banker’s algorithm

designate one of the processes in the system as the process
that maintains the information necessary to carry out the
Banker’s algorithm

Every resource request must be channeled through the designated
process.

Also implemented easily, but may require too much overhead

Not practical because the designated process may become a
bottleneck due to excessive messages that it has to process

March 29, 2008 Operating Systems: The course 20

-- Deadlock Prevention

Resource-ordering deadlock-prevention Scheme

Time stamped Deadlock-Prevention Scheme

Wait-Die Scheme

Would-Wait Scheme

March 29, 2008 Operating Systems: The course 21

--- Resource-ordering deadlock-prevention Scheme

Define a global ordering among the system resources

Assign a unique number to all system resources

A process may request a resource with unique number i only if
it is not holding a resource with a unique number grater than i

Simple to implement; requires little overhead.

March 29, 2008 Operating Systems: The course 22

-- Time stamped Deadlock-Prevention Scheme

Each process Pi is assigned a unique priority number

Priority numbers are used to decide whether a process Pi should wait
for a process Pj; otherwise Pi is rolled back

The scheme prevents deadlocks

For every edge Pi → Pj in the wait-for graph, Pi has a higher priority than Pj

Thus a cycle cannot exist

Disadvantage - starvation

Solution :- priorities based on timestamps

Wait-die scheme (nonpreemptive)

Wound-wait scheme (preemptive)

March 29, 2008 Operating Systems: The course 23

--- Wait-Die Scheme

If Pi requests a resource currently held by Pj, Pi is allowed to wait
only if it has a smaller timestamp than does Pj (Pi is older than Pj)

Otherwise, Pi is rolled back (dies)

In short, if the requesting process is:
Old: waits
Young: dies

Example: Suppose that processes P1, P2, and P3 have timestamps
5, 10, and 15 respectively

if P1 request a resource held by P2, then P1 will wait

If P3 requests a resource held by P2, then P3 will be rolled back

March 29, 2008 Operating Systems: The course 24

--- Would-Wait Scheme

If Pi requests a resource currently held by Pj, Pi is allowed to wait
only if it has a larger timestamp than does Pj (Pi is younger than Pj).
Otherwise Pj is rolled back (Pj is wounded by Pi)

In short, if the requesting process:
young: wait
old: never waits-wounds the young

Example: Suppose that processes P1, P2, and P3 have timestamps 5,
10, and 15 respectively

If P1 requests a resource held by P2, then the resource will be
preempted from P2 and P2 will be rolled back

If P3 requests a resource held by P2, then P3 will wait

March 29, 2008 Operating Systems: The course 25

--- Both (Wait-die and Wound-wait) schemes

In Wait-die
Older waits for younger
Younger is not allowed to wait (Killed)

In Wound-wait
Older never waits for younger
Younger is allowed to wait

In both schemes unnecessary rollback can occur

Both schemes can avoid starvation provided that, when
a process is rolled back its timestamp doesn’t change.

March 29, 2008 Operating Systems: The course 26

-- Deadlock Detection

Centralized Approach

Fully Distributed Approach

March 29, 2008 Operating Systems: The course 27

--- Centralized Approach …

Each site keeps a local wait-for graph

The nodes of the graph correspond to all the processes that are
currently either holding or requesting any of the resources local
to that site

A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local
wait-for graphs

March 29, 2008 Operating Systems: The course 28

---- Local and Global Wait-For Graphs

March 29, 2008 Operating Systems: The course 29

… --- Centralized Approach ...

There are three different options (points in time) when
the wait-for graph may be constructed:

1. Whenever a new edge is inserted or removed in one of the
local wait-for graphs

2. Periodically, when a number of changes have occurred in a
wait-for graph

3. Whenever the coordinator needs to invoke the cycle-detection
algorithm

With options 1 and 2, Unnecessary rollbacks may occur
as a result of false cycles

March 29, 2008 Operating Systems: The course 30

… --- Centralized Approach …

Option 3:

Append unique identifiers (timestamps) to requests from
different sites

When process Pi, at site A, requests a resource from process Pj,
at site B, a request message with timestamp TS is sent

The edge Pi → Pj with the label TS is inserted in the local wait-
for of A. The edge is inserted in the local wait-for graph of B
only if B has received the request message and cannot
immediately grant the requested resource

March 29, 2008 Operating Systems: The course 31

… --- Centralized Approach: Option 3-Algorithm

1. The controller sends an initiating message to each site in the
system

2. On receiving this message, a site sends its local wait-for graph to
the coordinator

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process in

the system
(b) The graph has an edge Pi → Pj if and only if

(1) there is an edge Pi → Pj in one of the wait-for graphs, or
(2) an edge Pi → Pj with some label TS appears in more than

one wait-for graph
If the constructed graph contains a cycle ⇒ deadlock

March 29, 2008 Operating Systems: The course 32

--- Fully Distributed Approach

All controllers share equally the responsibility for detecting
deadlock

Every site constructs a wait-for graph that represents a part of the
total graph

We add one additional node Pex to each local wait-for graph

If a local wait-for graph contains a cycle that does not involve
node Pex, then the system is in a deadlock state

A cycle involving Pex implies the possibility of a deadlock
To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked

March 29, 2008 Operating Systems: The course 33

---- Augmented Local Wait-For Graphs

March 29, 2008 Operating Systems: The course 34

---- Augmented Local Wait-For Graph in Site S2

March 29, 2008 Operating Systems: The course 35

- Election Algorithms

Determine where a new copy of the coordinator should be
restarted

Assume that a unique priority number is associated with each
active process in the system, and assume that the priority number
of process Pi is i

Assume a one-to-one correspondence between processes and sites

The coordinator is always the process with the largest priority
number. When a coordinator fails, the algorithm must elect that
active process with the largest priority number

Two algorithms, the bully algorithm and a ring algorithm, can be
used to elect a new coordinator in case of failures

March 29, 2008 Operating Systems: The course 36

-- Bully Algorithm …

Applicable to systems where every process can send a
message to every other process in the system

If process Pi sends a request that is not answered by the
coordinator within a time interval T, assume that the
coordinator has failed; Pi tries to elect itself as the new
coordinator

Pi sends an election message to every process with a higher
priority number, Pi then waits for any of these processes to
answer within T

March 29, 2008 Operating Systems: The course 37

… -- Bully Algorithm …

If no response within T, assume that all processes with
numbers greater than i have failed; Pi elects itself the
new coordinator

If answer is received, Pi begins time interval T´, waiting
to receive a message that a process with a higher
priority number has been elected

If no message is sent within T´, assume the process
with a higher number has failed; Pi should restart the
algorithm

March 29, 2008 Operating Systems: The course 38

… -- Bully Algorithm

If Pi is not the coordinator, then, at any time during execution, Pi
may receive one of the following two messages from process Pj

Pj is the new coordinator (j > i). Pi, in turn, records this
information
Pj started an election (j > i). Pi, sends a response to Pj and
begins its own election algorithm, provided that Pi has not
already initiated such an election

After a failed process recovers, it immediately begins execution of
the same algorithm

If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let it
become the coordinator process, even if there is a currently active
coordinator with a lower number

March 29, 2008 Operating Systems: The course 39

-- Ring Algorithm …

Applicable to systems organized as a ring (logically or physically)

Assumes that the links are unidirectional, and that processes send
their messages to their right neighbors

Each process maintains an active list, consisting of all the priority
numbers of all active processes in the system when the algorithm
ends

If process Pi detects a coordinator failure, I creates a new active
list that is initially empty. It then sends a message elect(i) to its
right neighbor, and adds the number i to its active list

March 29, 2008 Operating Systems: The course 40

… -- Ring Algorithm

If Pi receives a message elect(j) from the process on the left, it
must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi creates a new
active list with the numbers i and j

It then sends the message elect(i), followed by the message elect(j)
2. If i ≠ j, then the active list for Pi now contains the numbers of all the

active processes in the system
Pi can now determine the largest number in the active list to identify the
new coordinator process

3. If i = j, then Pi receives the message elect(i)
The active list for Pi contains all the active processes in the system

Pi can now determine the new coordinator process.

March 29, 2008 Operating Systems: The course 41

End of Chapter 16 and 18

