Security

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks

- The Security Problem
- Program Threats
- System and network threats
- Cryptography as a Security Tool
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- Computer-Security Classifications

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

-- Security Violations

- Categories
 - Breach of confidentiality
 - Breach of integrity
 - Breach of availability
 - Theft of service
 - Denial of service
- Methods
 - Masquerading (breach authentication)
 - Replay attack
 - Man-in-the-middle attack

-- Standard Security Attacks

March 29, 2008

Operating Systems: The course

-- Security Measure Levels

- Security must occur at four levels to be effective:
 - Physical
 - Human
 - Avoid social engineering, phishing, dumpster diving
 - Operating System
 - Network
- Security as weak as the weakest chain.
- In the remainder of this chapter, we address security at the network and operating-system level.

- Program Threats ...

- Trojan Horse
 - Code segment that misuses its environment
 - Exploits mechanisms for allowing programs written by users to be executed by other users
 - Spyware, pop-up browser windows, covert channels
- Trap Door
 - Specific user identifier or password that circumvents normal security procedures
 - Could be included in a compiler
- Logic Bomb
 - Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
 - Exploits a bug in a program (overflow either the stack or memory buffers)

-- Hypothetical Stack Frame

Before attack

After attack

Operating Systems: The course

... - Program Threats ...

- Virus
 - Executable code often sent as an attachment to an e-mail message or hidden in files such as audio clips, video clips and games
 - Attaches to or overwrites other files to replicate itself
 - Can corrupt files, control applications or even erase a hard drive
 - Can be spread across a network simply by sharing "infected" files embedded in e-mail attachments, documents or programs

... - Program Threats

- Many categories of viruses, literally many thousands of viruses
 - File
 - Boot
 - Macro
 - Source code
 - Polymorphic
 - Encrypted
 - Stealth
 - Tunneling
 - Multipartite
 - Armored

- System and Network Threats

- Worm
 - Executable code that spreads by infecting files over a network
 - Rarely requires any user action to propagate
 - Does not need to be attached to another program or file to spread
- Once a virus or worm is released, it can spread rapidly, often infecting millions of computers worldwide within minutes or hours
- Port scanning
 - Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
 - Overload the targeted computer preventing it from doing any useful work
 - Distributed denial-of-service (DDOS) come from multiple sites at once

March 29, 2008

- Broadest security tool available
 - Source and destination of messages cannot be trusted without cryptography
 - Means to constrain potential senders (*sources*) and / or receivers (*destinations*) of *messages*
- Based on secrets (keys)
 - Symmetric
 - Asymmetric

- Keys are generally distributed selectively to computers in the network.
- A sender can encode its message using the key so that only the computer with a certain key can decode the message. Key becomes the destination.
- A recipient of a message verify that the message was created by some computer possessing a certain key – key is the source of the message.
- Important: It should be computationally infeasible to derive the key from messages used to generate and from any other public information.

-- Secure Communication over Insecure Medium

March 29, 2008

Operating Systems: The course

- Encryption is used to keep sensitive data and information more secure when transmitted over unreliable links as an OS may not offer sufficient protection for such highly sensitive data.
- Encrypt clear text (readable form) into cipher text (internal form).
- Properties of good encryption technique:
 - Relatively simple for authorized users to encrypt and decrypt data.
 - Encryption scheme depends not on the secrecy of the algorithm but on a parameter of the algorithm called the encryption key.
 - Extremely difficult for an intruder to determine the encryption key.

-- Symmetric Cryptography ...

- Uses the same secret key to encrypt and decrypt a message
 - Sender
 - Encrypts a message using the secret key
 - Sends encrypted message to the intended recipient
 - Recipient
 - Decrypts the message using the same secret key

- Limitation of secret-key cryptography
 - Before two parties can communicate securely, they must find a secure way to exchange the secret key
 - Can be done by courier or a key distribution center (KDC)
 - KDCs generate session keys to clients
- Examples of secret-key cryptography:
 - DES
 - 3DES
 - AES

--- Distributing a session key with a key distribution center

-- Asymmetric (public-key) Cryptography ...

- Solves the problem of securely exchanging symmetric keys
- Asymmetric
 - Employs two inversely related keys:
 - Public key
 - Freely distributed
 - Private key
 - Kept secret by its owner
- If the public key encrypts a message, only the corresponding private key can decrypt it

... -- Asymmetric Cryptography ...

- If the decryption key is the sender's public key and the encryption key is the sender's private key, the sender of the message can be authenticated
 - Message should be encrypted first using the receiver's public key, then with the sender's secret key
 - Public key provides confidentiality
 - Secret key provides authentication
- Examples of public-key cryptography:
 - RSA
 - Pretty Good Privacy (PGP)

- Secure Communication ...

- Five fundamental requirements for a successful, secure transaction
 - Privacy
 - Ensuring that the information transmitted over the Internet has not been viewed by a third party
 - Integrity
 - Ensuring that the information sent or received has not been altered
 - Authentication
 - Verifying the identities of the sender and receiver
 - Authorization
 - Managing access to protected resources on the basis of user credentials
 - Nonrepudiation
 - Ensuring that the network will operate continuously

- Maintaining the secrecy of private keys is essential to the maintenance of cryptographic system security
- Most security breaches result from poor key management rather than cryptanalytic attacks
 - For example: The mishandling of private keys, resulting in key theft

Key generation

- The process by which keys are created
- Important to use a key-generation program that can generate a large number of keys as randomly as possible
- Key security is improved when key length is large enough that brute-force cracking is computationally infeasible

-- Key Agreement protocol ...

- public-key algorithms
 - Most often employed to exchange secret keys securely
- Key agreement protocol
 - The process by which two parties can exchange keys over an unsecure medium
 - Digital envelopes
 - Digital signatures (using the SHA-1 and MD5 hash algorithms

--- Digital Envelop

Operating Systems: The course

- The electronic equivalents of written signatures
- Developed to address the absence of authentication and integrity in public-key (Asymmetric) cryptography
- Authenticate senders' identities
 - Sender Hashes the message to produce message digest
 - Encrypts the message digest and the message before sending
- Difficult to forge
- Hash value uniquely identifies a message
 - Examples
 - Secure Hash Algorithm (SHA-1)
 - MD5 Message Digest Algorithm
 - Digital Signature Algorithm (DSA)

- Identifying users and the actions they are allowed to perform
- A user can be identified by:
 - a unique characteristic of the person (e.g., fingerprints, voiceprints, retina scans and signatures)
 - ownership of an item (e.g., badges, identification cards, keys and smart cards)
 - user knowledge (e.g., passwords, personal identification numbers (PINs) and lock combinations)

-- Basic Authentication

- Simple password protection
 - Most common authentication scheme
 - The user chooses a password, memorizes it and presents it to the system to gain admission to a resource or system
- Weaknesses of password protection
 - Users tend to choose passwords that are easy to remember
 - For example: the name of a spouse or pet
 - Someone who has obtained personal information about the user might try to log in several times using passwords that are characteristic of the user
 - Several repeated attempts might result in a security breach
- Password salting
 - Technique that inserts characters at various positions in the password before encryption
 - Can thwart attempts at recovering passwords from password files

--- Password Salting

Plaintext

Ciphertext

cGFzc3dvcmQ=

password p<u>s</u>as<u>a</u>sw<u>l</u>or<u>t</u>d newpassword n<u>s</u>ew<u>a</u>p<u>l</u>a<u>t</u>ss<u>e</u>wo<u>d</u>rd

cHNhc2Fzd2xvcnRk bmV3cGFzc3dvcmQ=

bnNld2FwbGF0c3Nld29kcmQ=

- Encrypted password
- One time password
- Biometrics
 - Uses unique personal information to identify a user
 - Fingerprints
 - Eyeball iris scans
 - Face scans
- Smart cards
 - Often designed to resemble a credit card
 - Can serve many different functions, from authentication to data storage
 - Most popular: memory cards and microprocessor cards

- Implementing Security Defenses

- Firewalls
- Intrusion detection systems
- Antivirus software
- Security patches
- Secure file systems
- Many others

Firewalls

- Protect a local area network (LAN) from intruders outside the network
- Police inbound and outbound traffic for the LAN
- Types of firewalls
 - Packet-filtering firewall
 - Inspects packets for inconsistencies such as incorrect source address
 - Application-level gateways
 - Inspect packets for malicious payloads (code)

-- Intrusion-Detection Systems (IDSs)

- IDSs
 - Monitor networks and application log files
 - Logs record information about system behavior, such as:
 - The time at which operating system services are requested
 - The name of the process that requests them
 - Examine log files to alert system administrators of suspicious application and/or system behavior
 - If an application exhibits erratic or malicious behavior, an IDS can halt the execution of that process
- Host-based intrusion detection
 - Specially used to detect Trojan horse
- Network-based intrusion detection
 - Mainly used to detect denial of service (Dos)

- Antivirus software
 - Attempts to protect a computer from a virus and/or identify and remove viruses on that computer
 - Various techniques used to detect and remove viruses from a system
 - None can offer complete protection

... -- Antivirus Software

- Signature-scanning virus detection
 - Relies on knowledge about the structure of the computer virus's code
 - Uses a known virus list
 - Can be particularly ineffective against variants and polymorphic viruses
- Heuristic scanning
 - Can prevent the spread of viruses by detecting and suspending any program exhibiting virus-like behavior:
 - Replication, residence in memory and/or destructive code
 - Primary strength: it can detect viruses that have not yet been identified

Security patches

- Code releases that address security flaws
- Simply releasing a patch for a security flaw is insufficient to improve security
- Developers should address security flaws by:
 - Notifying their users quickly
 - Providing software that facilitates the process of applying security patches
 - Example: Hotfixes
 - Microsoft Automatic Updates

- Secure file systems
 - Protect sensitive data regardless of how the data is accessed
- Encrypting File System (EFS)
 - Uses cryptography to protect files and folders in an NTFS file system
 - Uses secret-key and public-key encryption to secure files

- Auditing, accounting, and logging of all or specific system or network activities
- Example
 - Tripwire

Computer Security Classifications

- U.S. Department of Defense outlines four divisions of computer security: A, B, C, and D.
- **D** Minimal security.
- C Provides discretionary protection through auditing. Divided into C1 and C2. C1 identifies cooperating users with the same level of protection. C2 allows user-level access control.
- B All the properties of C, however each object may have unique sensitivity labels. Divided into B1, B2, and B3.
- A Uses formal design and verification techniques to ensure security.

End of Chapter 15