
March 29, 2008
Operating Systems: Virtual

memory 1

Virtual Memory

Chapter 9

March 29, 2008 Operating Systems: Virtual memory 2

Objectives

To describe the benefits of a virtual memory system

To explain the concepts of:

demand paging
page-replacement algorithms
allocation of page frames

To discuss the principle of the working-set model

March 29, 2008 Operating Systems: Virtual memory 3

Chapter Outline

Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing

March 29, 2008 Operating Systems: Virtual memory 4

- Background

Virtual memory – separation of user logical memory
from physical memory.

Only part of the program needs to be in memory for execution
Logical address space can therefore be much larger than
physical address space
Allows address spaces to be shared by several processes
Allows for more efficient process creation

Virtual memory can be implemented via:
Demand paging
Demand segmentation (Skip)

March 29, 2008 Operating Systems: Virtual memory 5

--Virtual Memory That is Larger Than Physical Memory

⇒

March 29, 2008 Operating Systems: Virtual memory 6

- Demand Paging

Bring a page into memory only when it is needed
Less I/O needed
Less memory needed
Faster response
More users

Page is needed ⇒ reference to it
invalid reference ⇒ abort
not-in-memory ⇒ bring to memory

Lazy swapper – never swaps a page into memory
unless page will be needed

Swapper that deals with pages is a pager

March 29, 2008 Operating Systems: Virtual memory 7

-- Transfer of a Paged Memory to Contiguous Disk Space

March 29, 2008 Operating Systems: Virtual memory 8

-- Page Table When Some Pages Are Not in Main Memory

March 29, 2008 Operating Systems: Virtual memory 9

-- Page Fault

1. Operating system looks at another table to decide:

Invalid reference ⇒ abort

Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page fault

March 29, 2008 Operating Systems: Virtual memory 10

-- Steps in Handling a Page Fault

March 29, 2008 Operating Systems: Virtual memory 11

-- Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

March 29, 2008 Operating Systems: Virtual memory 12

-- Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000

= 200 + 7,999,800 X p

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

March 29, 2008 Operating Systems: Virtual memory 13

- What happens if there is no free frame?

Find a page in memory, but not really in use, and
swap it out

For better performance:

Find an algorithm which will result in minimum number of
page faults

Prevent over-allocation of memory.

Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

March 29, 2008 Operating Systems: Virtual memory 14

-- Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victim frame

3. Bring the desired page into the (newly) free
frame; update the page and frame tables

4. Restart the process

March 29, 2008 Operating Systems: Virtual memory 15

-- Page Replacement

March 29, 2008 Operating Systems: Virtual memory 16

-- Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

March 29, 2008 Operating Systems: Virtual memory 17

… -- Page replacement Algorithms

First-In-First-Out (FIFO)

Optimal

Least Recently Used (LRU)

March 29, 2008 Operating Systems: Virtual memory 18

-- First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

3 frames (3 pages can be in memory at a time per process)

4 frames

Belady’s Anomaly: more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

March 29, 2008 Operating Systems: Virtual memory 19

--- FIFO Page Replacement

March 29, 2008 Operating Systems: Virtual memory 20

--- FIFO Illustrating Belady’s Anomaly

March 29, 2008 Operating Systems: Virtual memory 21

-- Optimal Algorithm

Replace page that will not be used for longest period of time
4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?
Used for measuring how well your algorithm performs

1 4

2 6 page faults
3

4 5

March 29, 2008 Operating Systems: Virtual memory 22

- Optimal Page Replacement

March 29, 2008 Operating Systems: Virtual memory 23

-- Least Recently Used (LRU) Algorithm …

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
Every page entry has a counter; every time page is
referenced through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to
determine which are to change

1 1

2

4

3

1 51

22 22

53 45

34 34

March 29, 2008 Operating Systems: Virtual memory 24

--- LRU Page Replacement

March 29, 2008 Operating Systems: Virtual memory 25

-- LRU Algorithm Implementation

Stack implementation – keep a stack of page numbers in a
double link form:

Page referenced:

move it to the top

requires 6 pointers to be changed

No search for replacement

March 29, 2008 Operating Systems: Virtual memory 26

--- Use Of A Stack to Record The Most Recent Page References

March 29, 2008 Operating Systems: Virtual memory 27

- Allocation of Frames

Each process needs minimum number of pages

Example: IBM 370 – 6 pages to handle SS MOVE instruction:

instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Two major allocation schemes

fixed allocation
Equal allocation
Proportional allocation

priority allocation

March 29, 2008 Operating Systems: Virtual memory 28

-- Fixed Allocation

Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

Proportional allocation – Allocate according to the size of
process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

≈×=

≈×=

=

=
=

a

a

s
s
m

i

March 29, 2008 Operating Systems: Virtual memory 29

-- Priority Allocation

Use a proportional allocation scheme using priorities
rather than size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process
with lower priority number

March 29, 2008 Operating Systems: Virtual memory 30

-- Global vs. Local Allocation

Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

Local replacement – each process selects from only
its own set of allocated frames

March 29, 2008 Operating Systems: Virtual memory 31

- Thrashing …

If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

low CPU utilization

operating system thinks that it needs to increase
the degree of multiprogramming

another process added to the system

Thrashing ≡ a process is busy swapping pages in and
out

March 29, 2008 Operating Systems: Virtual memory 32

… - Thrashing

March 29, 2008 Operating Systems: Virtual memory 33

-- Demand Paging and Thrashing

Why does demand paging work?

Locality model

Process migrates from one locality to another
Localities may overlap

Why does thrashing occur?

Σ size of locality > total memory size

March 29, 2008 Operating Systems: Virtual memory 34

-- Locality In A Memory-Reference Pattern

March 29, 2008 Operating Systems: Virtual memory 35

-- Working-Set Model

∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 memory references
WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆ memory
references (varies in time)

if ∆ too small will not encompass entire locality
if ∆ too large will encompass several localities
if ∆ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
if D > m ⇒ Thrashing
Policy if D > m, then suspend one of the processes

March 29, 2008 Operating Systems: Virtual memory 36

-- Working-set model

March 29, 2008 Operating Systems: Virtual memory 37

-- Keeping Track of the Working Set

Approximate with interval timer + a reference bit

Example: ∆ = 10,000

Timer interrupts after every 5000 time units
Keep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all
reference bits to 0
If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

Improvement = 10 bits and interrupt every 1000 time units

March 29, 2008 Operating Systems: Virtual memory 38

- Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
If actual rate too low, process loses frame
If actual rate too high, process gains frame

March 29, 2008
Operating Systems: Virtual

memory 39

End of Chapter 9

