
March 29, 2008 Operating Systems: The course 1

DEADLOCKS

Chapter 7

March 29, 2008 Operating Systems: The course 2

Chapter Objectives

To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their tasks

To present a number of different methods for preventing
or avoiding deadlocks in a computer system.

March 29, 2008 Operating Systems: The course 3

Outline

The Deadlock Problem +
System Model +
Deadlock Characterization +
Resource Allocation Graph +
Methods for Handling Deadlocks +
Deadlock Prevention +
Deadlock Avoidance +
Deadlock Detection +
Recovery from Deadlock +
Summary +

March 29, 2008 Operating Systems: The course 4

- The Deadlock Problem …

In a multiprogramming environment processes compete for
resources.

A process requests a resource if the resource is not available, the
process enters a wait state.

Waiting processes may never again change state, because the
resources they have requested are held by other waiting processes.
This situation is called deadlock.

Example of a deadlock:
In the 5 philosophers problem of the previous chapter, if every
philosopher holds one chopstick and never puts it back till he
gets a second one.

March 29, 2008 Operating Systems: The course 5

… - The Deadlock Problem …

A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.
Example

System has 2 tape drives.
P1 and P2 each hold one tape drive and each needs another
one.

Example
semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)

March 29, 2008 Operating Systems: The course 6

… - The Deadlock Problem

Bridge Crossing Example
Traffic only in one direction.
Each section of a bridge can be viewed as a resource.
If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).
Several cars may have to be backed up if a deadlock
occurs.
Starvation is possible.

March 29, 2008 Operating Systems: The course 7

- System Model

Resources
Resources are partitioned into resource types.
Each resource type consists of a number of identical instances.
Example of resource types are: printers, CPU cycle, file etc.
If a process requests an instance of a resource type, the allocation of
any instance of the type will satisfy the request.
The number of resources requested may not exceed the total number
available in the system.

Under normal mode of operation, a process may utilize a resource in
only the following sequence:

Request: It may have to wait if requested resource can not be granted
immediately.
Use
Release

March 29, 2008 Operating Systems: The course 8

- Deadlock Characterization

Necessary Conditions for Deadlock +

Resource Allocation Graph (RAG) +

Basic Fact +

March 29, 2008 Operating Systems: The course 9

-- Necessary Conditions for Deadlock

A deadlock situation can arise if the following four conditions
hold simultaneously in a system:

Mutual exclusion condition: Each resource is either
currently assigned to exactly one process or is available.

Hold and wait condition: A process must be holding at least
one resource and waiting to acquire additional resources that
are currently being held by other processes.

No preemption condition: Resources can not be preempted;
that is, a process can be released only voluntarily by the
process holding it, after that process has completed its task.

Circular wait condition: There must be a circular chain of
two or more processes, each of which is waiting for a resource
held by the next member of the chain.

March 29, 2008 Operating Systems: The course 10

- Resource-Allocation Graph …

A set of vertices V and a set of edges E.
V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.

R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

request edge – directed edge P1 → Rj

assignment edge – directed edge Rj → Pi

March 29, 2008 Operating Systems: The course 11

… - Resource-Allocation Graph (RAG)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Rj

Pi

Rj

March 29, 2008 Operating Systems: The course 12

-- Example of a Resource Allocation Graph

March 29, 2008 Operating Systems: The course 13

-- Example of a RAG

Cycle but no DeadlockDeadlock

March 29, 2008 Operating Systems: The course 14

-- Basic Facts

If graph contains no cycles ⇒ no deadlock.

If graph contains a cycle ⇒

if only one instance per resource type, then
deadlock.

if several instances per resource type, possibility of
deadlock.

March 29, 2008 Operating Systems: The course 15

- Methods for Handling Deadlocks

Prevent deadlocks, by negating one of the four necessary
conditions.

Avoid deadlocks, ensuring that the system will never enter a
deadlock state. This requires that the operating system be given in
advance additional information concerning which resources a
process will request and use during its lifetime.

Recover from deadlocks: Allow the system to enter a deadlock
state and then recover.

Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems, including UNIX. (The
ostrich algorithm).

March 29, 2008 Operating Systems: The course 16

- Deadlock Prevention …

Is done by restraining the ways request can be made. It ensures
that one of the Following four conditions can not occur.

Mutual Exclusion – not required for sharable resources; must
hold for nonsharable resources.

Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources.

Require process to request and be allocated all its resources
before it begins execution, or allow process to request
resources only when the process has none.
Low resource utilization; starvation possible.

March 29, 2008 Operating Systems: The course 17

… - Deadlock Prevention

No Preemption –
If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.
Preempted resources are added to the list of resources for
which the process is waiting.
Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing
order of enumeration.

Problems with prevention is Low device utilization and reduced
system throughput.

March 29, 2008 Operating Systems: The course 18

- Deadlock Avoidance

Basic Concept +
Safe State +
Resource-Allocation Graph Algorithm +
Bankers Algorithm +

March 29, 2008 Operating Systems: The course 19

-- Basic Concept

Deadlock avoidance approach requires that the system has
some additional a priori information available.

Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can
never be a circular-wait condition.

Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

March 29, 2008 Operating Systems: The course 20

-- Safe State

When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all
processes.

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj, with j<I.

If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.
When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.
When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

March 29, 2008 Operating Systems: The course 21

--- Example: Safe State

Consider a system with 12 magnetic tape drivers and 3 processes,
namely, P0, P1, P2. P0 requires 10 tape drivers, P1 may need 4,
and P2 may need up to 9. Suppose at time T0, P0 is holding 5, P1 is
holding 2, and P2 is holding 2 tape drives. Thus there are 3 free
tape drives.

Maximum Needs Allocated
P0 10 5
P1 4 2
P2 9 2

The sequence <P1, P0, P2> satisfies the safety condition.

If at time T1, P2 requests and is allocated 1 more tape drive the
system will be in unsafe state.

March 29, 2008 Operating Systems: The course 22

--- Basic Facts

If a system is in safe state ⇒ no deadlocks.

If a system is in unsafe state ⇒ possibility of deadlock.

Avoidance ⇒ ensure that a system will never enter an unsafe
state.

March 29, 2008 Operating Systems: The course 23

-- Resource-Allocation Graph Algorithm

Assume one instance per resource type.

Claim edge Pi --->Rj indicated that process Pj may
request resource Rj; represented by a dashed line.

Claim edge converts to request edge when a process
requests a resource.

When a resource is released by a process, assignment
edge reconverts to a claim edge.

Resources must be claimed a priori in the system.

March 29, 2008 Operating Systems: The course 24

--- RAG For Deadlock Avoidance

March 29, 2008 Operating Systems: The course 25

--- Unsafe State In RAG

March 29, 2008 Operating Systems: The course 26

-- Banker’s Algorithm

Multiple instances.

Each process must a priori claim maximum use.

When a process requests a resource it may have to
wait.

When a process gets all its resources it must return
them in a finite amount of time.

March 29, 2008 Operating Systems: The course 27

--- Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of
resources types.

Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available.

Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj.

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj.

Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

March 29, 2008 Operating Systems: The course 28

--- Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i - 1,3, …, n.

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4.

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

March 29, 2008 Operating Systems: The course 29

--- Resource-Request: Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available.

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available - Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;;

• If safe ⇒ the resources are allocated to Pi.
• If unsafe ⇒ Pi must wait, and the old resource-allocation state is

restored

March 29, 2008 Operating Systems: The course 30

--- Example of Banker’s Algorithm…

5 processes P0 through P4; 3 resource types A (10 instances),
B (5instances, and C (7 instances).

Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

March 29, 2008 Operating Systems: The course 31

… --- Example of Banker’s Algorithm …

The content of the matrix. Need is defined to be Max –
Allocation.

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4,
P2, P0> satisfies safety criteria.

March 29, 2008 Operating Systems: The course 32

… --- Example of Banker’s Algorithm

P1 Request (1,0,2)
Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true.

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 1 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2>
satisfies safety requirement.
Can request for (3,3,0) by P4 be granted?
Can request for (0,2,0) by P0 be granted?

March 29, 2008 Operating Systems: The course 33

- Deadlock Detection

Idea
Allow system to enter deadlock state

Detection algorithm

Recovery scheme

Detection Algorithms

Single Instance of Each Resource Type +

Several Instances of a Resource Type +

March 29, 2008 Operating Systems: The course 34

-- Single Instance of Each Resource Type

Maintain wait-for graph
Nodes are processes.
Pi → Pj if Pi is waiting for Pj.

Periodically invoke an algorithm that searches for a
cycle in the graph.

An algorithm to detect a cycle in a graph requires an
order of n2 operations, where n is the number of
vertices in the graph.

March 29, 2008 Operating Systems: The course 35

-- Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

March 29, 2008 Operating Systems: The course 36

-- Several Instances of a Resource Type

Available: A vector of length m indicates the number of
available resources of each type.

Allocation: An n x m matrix defines the number of
resources of each type currently allocated to each
process.

Request: An n x m matrix indicates the current request
of each process. If Request [ij] = k, then process Pi is
requesting k more instances of resource type. Rj.

March 29, 2008 Operating Systems: The course 37

--- Detection Algorithm …

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:
(a) Work = Available
(b) For i = 1,2, …, n, if Allocationi ≠ 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:
(a) Finish[i] == false
(b) Requesti ≤ Work

If no such i exists, go to step 4.

March 29, 2008 Operating Systems: The course 38

… --- Detection Algorithm

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state.

March 29, 2008 Operating Systems: The course 39

---- Example of Detection Algorithm …

Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

Snapshot at time T0:
Allocation Request Available

A B C A B C A B C
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

March 29, 2008 Operating Systems: The course 40

---- Example of Detection Algorithm

P2 requests an additional instance of type C.
Request
A B C

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

State of system?
Can reclaim resources held by process P0, but insufficient
resources to fulfill other processes; requests.
Deadlock exists, consisting of processes P1, P2, P3, and P4.

March 29, 2008 Operating Systems: The course 41

---- Detection-Algorithm Usage

When, and how often, to invoke depends on:

How often a deadlock is likely to occur?

How many processes will be affected when it
happens

If detection algorithm is invoked arbitrarily, there may
be many cycles in the resource graph and so we would
not be able to tell which of the many deadlocked
processes “caused” the deadlock.

March 29, 2008 Operating Systems: The course 42

- Recovery from Deadlock …

Process Termination
Abort all deadlocked processes.

Abort one process at a time until the deadlock cycle is
eliminated.

In which order should we choose to abort?
Priority of the process.
How long process has computed, and how much longer to
completion.
Resources the process has used.
Resources process needs to complete.
How many processes will need to be terminated.
Is process interactive or batch?

March 29, 2008 Operating Systems: The course 43

… - Recovery from Deadlock

Resource Preemption

Selecting a victim – minimize cost.

Starvation – same process may always be picked as victim,
include number of rollback in cost factor.

Rollback – return to some safe state, restart process for that state.

March 29, 2008 Operating Systems: The course 44

- Summary

The 4 Necessary Conditions for Deadlock
Mutual exclusion
Hold and wait
No preemption
Cyclic waiting

Resource Allocation Graph
Methods for Handling Deadlocks

Ostrich algorithm
Deadlock Prevention

Negate 1 of the 4 necessary conditions for deadlock
Deadlock avoidance

Safe State
Claim edge
Banker’s algorithm

Recovery from deadlock
Wait-for-graph
Detection algorithm

March 29, 2008 Operating Systems: The course 45

End of Chapter 7

