
March 29, 2008 OS:Threads 1

THREADS

March 29, 2008 OS:Threads 2

Chapter outline

Overview +
Multithreading Models +
Threading Issues +
Pthreads +
Examples of Threads +

March 29, 2008 OS:Threads 3

- Overview

Thread concept +
Benefits of threads +
Thread states +
Supporting threads +

March 29, 2008 OS:Threads 4

-- Thread Concepts …

A thread
Is simply an execution stream through a process.
Some times it is called lightweight process (LWP)
Has:

A program counter
A register set
A stack
State

It shares with other threads of the same process:
Data section
Code section
Global Variables
Accounting information
Other OS resources, such as open files and signals

March 29, 2008 OS:Threads 5

… -- Thread Concepts …

March 29, 2008 OS:Threads 6

… -- Thread Concepts

A modern application is implemented as a process with several threads.
For example a word processor can have:

A thread to display graphics
A thread for performing spelling
A thread for reading user input

March 29, 2008 OS:Threads 7

-- Benefits of Threads

Responsiveness:
One thread could be blocked while another thread could be responding to user
requests.

Resource sharing:
Threads of the same process share resources.

Economy:
Compared to processes, threads are:

Faster to create (around 30 times faster in Solaris 2)
Faster to context switch (around 5 times faster in Solaris 2)
Easier to manage
Consume less resources
Communicate with out involving the kernel (Those of the same process)

Utilization of multiprocessor architecture

March 29, 2008 OS:Threads 8

-- Thread States

Threads have three states:
Running
Ready
Blocked

They have no suspend state in user level threads (ULT) (ULTs will
be explained later) because all threads within the same process
share the same address space. Suspending (swapping) a single
thread involves suspending all threads of the same process.

Termination of a process, terminates all threads within the
process.

March 29, 2008 OS:Threads 9

-- Supporting Threads

Support for threads may be provided at either the user
level or the kernel level. In this section we will discuss:

User Level Threads +
Kernel Level Threads +
User Vs. Kernel-Level threads +

March 29, 2008 OS:Threads 10

--- User-level Threads (ULT)

Are supported above the kernel.
Are implemented by thread library.
With no support from the kernel, the thread library
provides:

Thread creation
Thread termination
Thread scheduling
Thread Management

All thread management is done in the user space.
Examples

POSIX Pthreads
Mach C-threads
Solaris threads

March 29, 2008 OS:Threads 11

---- A user-level threads package

March 29, 2008 OS:Threads 12

--- Kernel-Level Threads (KLT)

Are supported by the OS.

The kernel does thread:
Creation
termination
Scheduling
Management

Examples:
Windows 95/98/NT/2000
Solaris
Tru64 UNIX
BeOS
Linux

March 29, 2008 OS:Threads 13

----- A Threads Package managed by Kernel

March 29, 2008 OS:Threads 14

--- ULT Vs. KLT

ULTs are:
Faster than KLTs.
More portable than KLT
Tunable by user

In a single threaded kernel:

With ULT, if one thread is blocked, all the threads which belong
to the same KLT get blocked. (Some system threading libraries
translate blocking system calls into nonblocking system calls).

With KLT, if one thread is blocked, the other threads of the
same process don’t get blocked.

March 29, 2008 OS:Threads 15

- Multithreading Models

Many systems provide
support for both user &
kernel threads, resulting in
different multi-threaded
models. The four common
types of threading
implementation are:

Many-to-One Model+
One-to-One Model +
Many-to-Many Model +
Two-level Model +

March 29, 2008 OS:Threads 16

-- Many-to-One Model

Many user-level threads mapped to
single kernel thread.

Used on systems that do not support
kernel threads.

Efficient: Management is done in the
user space.

Can be blocked.

No parallelism.

Example
Green threads of Solaris 2

March 29, 2008 OS:Threads 17

-- One-to-One Model

Each ULT maps to KLT.

More concurrency than Many-to-one.

Threads can run in parallel.

When one thread gets blocked, CPU is
assigned another thread.

Drawback:
Frequent creation of KLTs. (overhead)
May need to Limit the number of
KLTs, hence ULTs.

Examples:
Windows 95/98/NT/2000/XP
OS/2

March 29, 2008 OS:Threads 18

-- Many-to-Many Model

Multiplexes ULTs to less than or equal
number of KLTs.
Allows the operating system to
create a sufficient number of kernel
threads.
Less concurrency than One-to-One
but better than Many-to-one.
More ULTs can be created in this
model than in the One-to-One.
If a thread is blocked, CPU is assigned
another thread.
Examples:

Solaris 2
Windows NT/2000 with the
ThreadFiber package

March 29, 2008 OS:Threads 19

-- Two-level Model

Similar to M:M, except that it allows a user thread to be bound to
kernel thread

Examples
IRIX
HP-UX
Tru64 UNIX
Solaris 8 and earlier

March 29, 2008 OS:Threads 20

- Threading Issues

In this section we will discuss some issues to consider
with multithreaded programs.

Thread creation +
Thread cancellation +
Signal handling +
Thread-specific Data +
Thread pools +

March 29, 2008 OS:Threads 21

-- Thread Creation

The semantic of fork and exec is different for threads
and processes.

If a thread in a program calls fork:
Does it duplicate all the threads of the process or
Or it only duplicates the thread that invoked the fork.

Some UNIX systems have chosen to have 2 versions of fork.
One that duplicates all threads (when exec follows fork).
Another one that duplicates the thread that invoked the fork
(when no exec).

March 29, 2008 OS:Threads 22

-- Threading Cancellation

Is a task of terminating a thread before it has competed.
Example:

Threads concurrently searching a DB. If one thread returns the result
others might be cancelled.
When a user presses the STOP button on a web browser.

Cancellation of a thread can occur in two ways:
Asynchronous: One thread immediately terminated by another.
(used by most OS)
Deferred: A thread checks to terminate itself.

March 29, 2008 OS:Threads 23

-- Signal Handling

A signal is used to notify a process that a particular event has
occurred.
A signal can be:

Synchronous
Asynchronous

Signals follow the same pattern
A signal is generated by the occurrence of a particular event
A generated signal is delivered to a process
One delivered, the signal must be handled by either

A default signal handler
A user-defined signal handler

A process may have many threads so where then should a signal
be delivered. In general, the following options exist:

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process (like <control>< c>)
Deliver the signal to certain threads in the process
Assign a specific thread to receive all signals of the process (Solaris 2)

March 29, 2008 OS:Threads 24

--- Thread Signal Delivery

March 29, 2008 OS:Threads 25

-- Thread-Specific Data

Threads belonging to a process share the data of the
process.

In some circumstances each thread might need its own
copy of data which is called thread specific-data.

Example: a unique identifier of a transaction.

March 29, 2008 OS:Threads 26

-- Thread Pools

A number of KLTs are created at process startup and are placed into a
pool.

A thread waits in the pool till it is needed.

If a thread completes a service, it is not destroyed. It is put back into the
pool.

If a pool contains no available threads, the server waits until one becomes
free.

The benefits of thread pools are:
Faster, because of not creating and destroying threads.
Number of threads can be controlled.

March 29, 2008 OS:Threads 27

- Pthreads

a POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization.

API specifies behavior of the thread library,
implementation is up to development of the library.

Common in UNIX operating systems.

March 29, 2008 OS:Threads 28

- Summary

Thread: lightweight process (LWP).

Benefits of threads:
Responsiveness
resource sharing
economy
Utilization of multiprocessor architecture

Thread states:
running
ready
Blocked

ULT, KLT.

Multi-threading Models:
Many-to-one
One-to-one
Many-to-Many
Two-level

Thread creation, thread cancellation, Signal handling, thread pools

March 29, 2008 OS:Threads 29

End

