King Fahd University of Petroleum and Minerals

Information and Computer Science Department

ICS 426: Data warehousing and Data Mining

DO NOT OPEN UNTIL INSTRUCTED TO DO SO!!!!

Write clearly, precisely, and briefly!!

ID:	
Name:	

Grades					
Section	Max	Scored			
A	30				
В	30				
TOTAL	60				

[3]

A. Questions from Chapter 2 (Data Preprocessing) (30)

- 1. Briefly explain each of the following two measures. Also, explain what the benefit of understanding them is. [4]
 - a. Algebraic measure

b. Holistic measure

2. Using smoothing by bin boundary, remove the noise from the following data:

[3]

3.	Briefly explain integration.	the	two	main	problems	that	are	resolved	during	data [3]
4.	How is correlation	on ana	alysis	used f	or data inte	egratio	on?			[3]

5. Data transformation involves normalization. Using an example, explain the

use of normalization for clustering.

Explain the following data reduction techniques: [8]					
a.	cluster sample				
b.	stratified sample				
c.	clustering				
d.	Stepwise forward selection algorithm				

5

7. Explain how discritization is done using the following techniques

[6]

a. ChiMerge

b. Entropy-based discritization

c. 3-4-5 Rule

Questions from Chapter 3 (DW & OLAP) (30)

1. What is a data warehouse [2]

- 2. Suppose that a data warehouse consists of 3 dimensions, namely, TIME, PRODUCT, and BRANCH, and two measures namely, COUNT, and SALES. Assume the distinct values in TIME, PRODUCT, and BRANCH are 100, 10, and 5 respectively [15]
 - **a.** Draw a star schema diagram for the data warehouse

b.	If each dimension consists of 2 levels, what is the maximum number of cuboids that can be created?
c.	By how many cells does the base cuboid grow every day.
d.	What is the number of cells in the data cube? (Assume we have a full cube.)
e.	How would you generate all the cuboids efficiently? (You can a graph to show which cuboid will be generated from which.)

3. Why the star schema gives better performance than the snow flake schema	na? [3]
4. Using an example, explain the following OLAP operations [[4]
a. Drill down	

b. Dice

[3]

5. Briefly explain the architecture	of a data warehouse.
-------------------------------------	----------------------

6. Compare ROLAP and MOLAP in terms of flexibility and performance. [3]