
March 24, 2008 ADBS: OODB 1

Concepts for
Object-Oriented Databases

Chapter 20

March 24, 2008 ADBS: OODB 2

Chapter Outline

Overview of O-O Concepts

O-O Identity, Object Structure and Type Constructors

Encapsulation of Operations, Methods and Persistence

Type and Class Hierarchies and Inheritance

Complex Objects

Other O-O Concepts

March 24, 2008 ADBS: OODB 3

Introduction

Data Models:

Hierarchical, Network (since mid-60’s),

Relational (since 1970 and commercially since 1982)

Object Oriented (OO) Data Models since mid-90’s

Reasons for creation of Object Oriented Databases

Need for more complex applications

Need for additional data modeling features

Increased use of object-oriented programming languages

March 24, 2008 ADBS: OODB 4

History of OO Models and Systems

Languages: Simula (1960’s), Smalltalk (1970’s), C++ (late
1980’s), Java (1990’s)

DBMS

Experimental Systems: Orion at MCC, IRIS at H-P labs,
Open-OODB at T.I., ODE at ATT Bell labs, Postgres - Montage
- Illustra at UC/B, Encore/Observer at Brown

Commercial products: Ontos, Gemstone, O2 (-> Ardent),
Objectivity, Objectstore (-> Excelon), Versant, Poet, Jasmine
(Fujitsu – GM)

Commercial OO Database products – several in the 1990’s,
but did not make much impact on mainstream data
management

March 24, 2008 ADBS: OODB 5

Overview of O-O Concepts(1)

Main claim: OO databases try to maintain a direct
correspondence between real-world and database objects so
that objects do not lose their integrity and identity and can easily
be identified and operated upon

Object: Two components: state (value) and behavior
(operations). Similar to program variable in programming
language, except that it will typically have a complex data
structure as well as specific operations defined by the
programmer

March 24, 2008 ADBS: OODB 6

Overview of O-O Concepts (2)

In OO databases, objects may have an object structure of
arbitrary complexity in order to contain all of the necessary
information that describes the object.

In contrast, in traditional database systems, information about a
complex object is often scattered over many relations or records,
leading to loss of direct correspondence between a real-world
object and its database representation.

March 24, 2008 ADBS: OODB 7

Overview of O-O Concepts (3)

The internal structure of an object in OOPLs includes the
specification of instance variables, which hold the values that
define the internal state of the object.

An instance variable is similar to the concept of an attribute,
except that instance variables may be encapsulated within the
object and thus are not necessarily visible to external users

March 24, 2008 ADBS: OODB 8

Overview of O-Or Concepts (4)

Some OO models insist that all operations a user can apply to an
object must be predefined. This forces a complete encapsulation
of objects.

To encourage encapsulation, an operation is defined in two
parts:

1. signature or interface of the operation, specifies the operation
name and arguments (or parameters).

2. method or body, specifies the implementation of the
operation.

March 24, 2008 ADBS: OODB 9

Overview of O-Or Concepts (5)

Operations can be invoked by passing a message to an object,
which includes the operation name and the parameters. The object
then executes the method for that operation.

This encapsulation permits modification of the internal structure of
an object, as well as the implementation of its operations, without
the need to disturb the external programs that invoke these
operations

March 24, 2008 ADBS: OODB 10

Overview of O-O Concepts (6)

Operator polymorphism: It refers to an operation’s ability to be
applied to different types of objects; in such a situation, an
operation name may refer to several distinct implementations,
depending on the type of objects it is applied to.

This feature is also called operator overloading

March 24, 2008 ADBS: OODB 11

Object Identity, Object Structure, and Type
Constructors (1)

Unique Identity: An OO database system provides a unique
identity to each independent object stored in the database. This
unique identity is typically implemented via a unique, system-
generated object identifier, or OID

The main property required of an OID is that it be immutable;
that is, the OID value of a particular object should not change.
This preserves the identity of the real-world object being
represented.

March 24, 2008 ADBS: OODB 12

Object Identity, Object Structure, and Type
Constructors (2)

Type Constructors: In OO databases, the state (current value)
of a complex object may be constructed from other objects (or
other values) by using certain type constructors.

The three most basic constructors are atom, tuple, and set.
Other commonly used constructors include list, bag, and array.
The atom constructor is used to represent all basic atomic values,
such as integers, real numbers, character strings, Booleans, and
any other basic data types that the system supports directly.

March 24, 2008 ADBS: OODB 13

Object Identity, Object Structure, and Type
Constructors (3)

Example 1, one possible relational database state corresponding to
COMPANY schema

March 24, 2008 ADBS: OODB 14

Object Identity, Object Structure, and Type
Constructors (4)

March 24, 2008 ADBS: OODB 15

Object Identity, Object Structure, and Type
Constructors (5)

March 24, 2008 ADBS: OODB 16

Object Identity, Object Structure, and Type
Constructors (6)

Example 1 (cont.)

We use i1, i2, i3, . . . to stand for unique system-generated object
identifiers. Consider the following objects:

o1 = (i1, atom, ‘Houston’)
o2 = (i2, atom, ‘Bellaire’)
o3 = (i3, atom, ‘Sugarland’)
o4 = (i4, atom, 5)
o5 = (i5, atom, ‘Research’)
o6 = (i6, atom, ‘1988-05-22’)
o7 = (i7, set, {i1, i2, i3})

March 24, 2008 ADBS: OODB 17

Object Identity, Object Structure, and Type
Constructors (7)

Example 1(cont.)

o8 = (i8, tuple, <dname:i5, dnumber:i4, mgr:i9, locations:i7,
employees:i10, projects:i11>)

o9 = (i9, tuple, <manager:i12, manager_start_date:i6>)

o10 = (i10, set, {i12, i13, i14})

o11 = (i11, set {i15, i16, i17})

o12 = (i12, tuple, <fname:i18, minit:i19, lname:i20, ssn:i21, . . .,
salary:i26, supervi-sor:i27, dept:i8>)
. . .

March 24, 2008 ADBS: OODB 18

Object Identity, Object Structure, and Type
Constructors (8)

Example 1 (cont.)

The first six objects listed in this example represent atomic values.
Object seven is a set-valued object that represents the set of
locations for department 5; the set refers to the atomic objects
with values {‘Houston’, ‘Bellaire’, ‘Sugarland’}. Object 8 is a tuple-
valued object that represents department 5 itself, and has the
attributes DNAME, DNUMBER, MGR, LOCATIONS, and so on.

March 24, 2008 ADBS: OODB 19

Object Identity, Object Structure, and Type
Constructors (9)

Representation of a DEPARTMENT complex object as a graph

March 24, 2008 ADBS: OODB 20

Object Identity, Object Structure, and Type
Constructors (10)

Specifying the object types Employee, date, and Department using type constructors

March 24, 2008 ADBS: OODB 21

Encapsulation of Operations, Methods, and Persistence (1)

Encapsulation

One of the main characteristics of OO languages and systems

Related to the concepts of abstract data types and information
hiding in programming languages

March 24, 2008 ADBS: OODB 22

Encapsulation of Operations, Methods, and Persistence (2)

Specifying Object Behavior via Class Operations:

The main idea is to define the behavior of a type of object based on
the operations that can be externally applied to objects of that type.

In general, the implementation of an operation can be specified in a
general-purpose programming language that provides flexibility
and power in defining the operations.

For database applications, the requirement that all objects be
completely encapsulated is too stringent.

One way of relaxing this requirement is to divide the structure of an
object into visible and hidden attributes (instance variables).

March 24, 2008 ADBS: OODB 23

Encapsulation of Operations, Methods, and Persistence (3)

March 24, 2008 ADBS: OODB 24

Encapsulation of Operations, Methods, and Persistence(4)

Specifying Object Persistence via Naming and Reachability:

Naming Mechanism: Assign an object a unique persistent name
through which it can be retrieved by this and other programs.

Reachability Mechanism: Make the object reachable from some
persistent object.

An object B is said to be reachable from an object A if a sequence of
references in the object graph lead from object A to object B.

In traditional database models such as relational model or EER model,
all objects are assumed to be persistent.

In OO approach, a class declaration specifies only the type and
operations for a class of objects. The user must separately define a
persistent object of type set (DepartmentSet) or list (DepartmentList)
whose value is the collection of references to all persistent
DEPARTMENT objects

March 24, 2008 ADBS: OODB 25

Type and Class Hierarchies and Inheritance (1)

Type (class) Hierarchy

A type in its simplest form can be defined by giving it a type name
and then listing the names of its visible (public) functions

When specifying a type in this section, we use the following
format, which does not specify arguments of functions, to simplify
the discussion:

TYPE_NAME: function, function, . . . , function

Example:

PERSON: Name, Address, Birthdate, Age, SSN

March 24, 2008 ADBS: OODB 26

Type and Class Hierarchies and Inheritance (2)

Subtype: when the designer or user must create a new type that
is similar but not identical to an already defined type

Supertype: It inherits all the functions of the subtype

Example (1):

EMPLOYEE: Name, Address, Birthdate, Age, SSN, Salary,
HireDate, Seniority

STUDENT: Name, Address, Birthdate, Age, SSN, Major, GPA
OR:
EMPLOYEE subtype-of PERSON: Salary, HireDate, Seniority
STUDENT subtype-of PERSON: Major, GPA

March 24, 2008 ADBS: OODB 27

Type and Class Hierarchies and Inheritance (3)

Extents: In most OODBs, the collection of objects in an extent has
the same type or class. However, since the majority of OODBs
support types, we assume that extents are collections of objects of
the same type for the remainder of this section.

Persistent Collection: It holds a collection of objects that is stored
permanently in the database and hence can be accessed and shared
by multiple programs

Transient Collection: It exists temporarily during the execution of
a program but is not kept when the program terminates

March 24, 2008 ADBS: OODB 28

Complex Objects (1)

Unstructured complex object: It is provided by a DBMS and
permits the storage and retrieval of large objects that are needed
by the database application.

Typical examples of such objects are bitmap images and long text
strings (such as documents); they are also known as binary large
objects, or BLOBs for short.

This has been the standard way by which Relational DBMSs have dealt
with supporting complex objects, leaving the operations on those
objects outside the RDBMS.

Structured complex object: It differs from an unstructured
complex object in that the object’s structure is defined by repeated
application of the type constructors provided by the OODBMS.
Hence, the object structure is defined and known to the OODBMS.
The OODBMS also defines methods or operations on it.

March 24, 2008 ADBS: OODB 29

Other Objected-Oriented Concepts

Polymorphism (Operator Overloading): This concept allows
the same operator name or symbol to be bound to two or more
different implementations of the operator, depending on the type
of objects to which the operator is applied

Multiple Inheritance and Selective Inheritance
Multiple inheritance in a type hierarchy occurs when a certain
subtype T is a subtype of two (or more) types and hence inherits
the functions (attributes and methods) of both supertypes.

For example, we may create a subtype
ENGINEERING_MANAGER that is a subtype of both MANAGER
and ENGINEER. This leads to the creation of a type lattice rather
than a type hierarchy.

March 24, 2008 ADBS: OODB 30

END

