
March 24, 2008 ADBS: The course 1

Database Recovery
Techniques

Chapter 19

March 24, 2008 ADBS: The course 2

Chapter Outline

Purpose of Database Recovery

Types of Failure

Transaction Log

Transaction Roll-back (Undo) and Roll-Forward

Data Updates

Data Caching

Checkpointing

Recovery schemes

March 24, 2008 ADBS: The course 3

- Purpose of Database Recovery

To bring the database into the last consistent state, which existed
prior to the failure

To preserve transaction ACID properties.

Example: If the system crashes before a fund transfer
transaction completes its execution, then either one or both
accounts may have incorrect value. Thus, the database must
be restored to the state before the transaction modified any of
the accounts

March 24, 2008 ADBS: The course 4

- Types of Failure

The database may become unavailable for use due to:

Transaction failure: Transactions may fail because of incorrect
input, deadlock, incorrect synchronization

System failure: System may fail because of addressing error,
application error, operating system fault, RAM failure, etc

Media failure: Disk head crash, power disruption, etc.

March 24, 2008 ADBS: The course 5

- Transaction Log …

RAM

Data diskLog disk

Log buffers data buffers (cache)

Transaction space

T1

March 24, 2008 ADBS: The course 6

… - Transaction Log

For recovery from any type of failure data values prior to modification
(BFIM - BeFore Image) and the new value after modification (AFIM – AFter
Image) are required. These values and other information is stored in a
sequential file called Transaction log. A sample log is given below. Back P
and Next P point to the previous and next log records of the same
transaction.

T ID Back P Next P Operation Data item BFIM AFIM
T1 0 1
T1 1 4
T2 0 8
T1 2 5
T1 4 7
T3 0 9
T1 5 nil

Begin
Write

W
R
R

End

Begin
X

Y
M
N

X = 200

Y = 100
M = 200
N = 400

X = 100

Y = 50
M = 200
N = 400

March 24, 2008 ADBS: The course 7

- Roll-back (Undo) and Roll-Forward (Redo) …

To maintain atomicity, a transaction’s operations are redone or
undone.

Undo: Restore all BFIMs on to disk (Remove all AFIMs).

Redo: Restore all AFIMs on to disk

Database recovery is achieved either by performing only Undos or
only Redos or by a combination of the two. These operations are
recorded in the log as they happen

March 24, 2008 ADBS: The course 8

… - Roll-back and Roll-Forward …

We show the process of roll-back with the help of the following
three transactions T1, and T2 and T3.

T1 T2 T3
read_item(A) read_item(B) read_item(C)
read_item(D) write_item(B) write_item(B)
write_item(D) read_item(D) read_item(A)
write_item(A) write_item(A

March 24, 2008 ADBS: The course 9

… - Roll-back and Roll-Forward …

One execution of T1, T2 and T3 as recorded in the log.

A B C D
30 15 40 20

[start_transaction, T3]
[read_item, T3, C]

* [write_item, T3, B, 15, 12] 12
[start_transaction,T2]
[read_item, T2, B]

** [write_item, T2, B, 12, 18] 18
[start_transaction,T1]
[read_item, T1, D]
[write_item, T1, D, 20, 25] 25
[read_item, T2, D]

** [write_item, T2, D, 25, 26] 26
[read_item, T3, A]

---- system crash ----
* T3 is rolled back because it did not reach its commit point.
** T2 is rolled back because it reads the value of item B written by T3.

March 24, 2008 ADBS: The course 10

… - Roll-back and Roll-Forward

One execution of T1, T2 and T3 as recorded in the log.

READ(C) READ(A)

READ(D)

WRITE(B)T3

BEGIN READ(B) WRITE(D)WRITE(B)
T2
BEGIN WRITE(D)READ(A) READ(D)

T1
BEGIN

system crash
Time

Illustrating cascading roll-back

March 24, 2008 ADBS: The course 11

- Data updates

Immediate Update: As soon as a data item is modified in
cache, the disk copy is updated.

Deferred Update: All modified data items in the cache is written
either after a transaction ends its execution or after a fixed
number of transactions have completed their execution

Shadow update: The modified version of a data item does not
overwrite its disk copy but is written at a separate disk location

In-place update: The disk version of the data item is overwritten
by the cache version

March 24, 2008 ADBS: The course 12

- Data Caching

Data items to be modified are first stored into database cache by
the Cache Manager (CM) and after modification they are flushed
(written) to the disk.

The flushing is controlled by Modified and Pin-Unpin bits.

Pin-Unpin: Instructs the operating system not to flush the data
item.

Modified: Indicates the AFIM of the data item.

March 24, 2008 ADBS: The course 13

-- Write-Ahead Logging

When in-place update (immediate or deferred) is used then log is
necessary for recovery and it must be available to recovery
manager. This is achieved by Write-Ahead Logging (WAL)
protocol

WAL states that:

Before a data item’s AFIM is flushed to the database disk
(overwriting the BFIM) its BFIM must be written to the log and
the log must be saved on a stable store (log disk).

Before a transaction executes its commit operation, all its
AFIMs must be written to the log and the log must be saved on
a stable store.

March 24, 2008 ADBS: The course 14

- Steal/No-Steal and Force/No-Force

Possible ways for flushing database cache to database disk:

If a cache page updated by a transaction cannot be written to disk
before the transaction commits, this is called no-steal approach.
Otherwise it is steal.

If all cache pages updated by a transaction are immediately written
to disk when a transaction commits, this is called a force approach.
Otherwise, it is called no-force.

These give rise to four different ways for handling recovery:

1. Steal/No-Force (Undo/Redo)

2. Steal/Force (Undo/No-redo)

3. No-Steal/No-Force (No-undo/Redo) and

4. No-Steal/Force (No-undo/No-redo).

March 24, 2008 ADBS: The course 15

- Checkpointing

From time to time (randomly or under some criteria) the database
flushes its buffer to database disk to minimize the task of
recovery. The following steps defines a checkpoint operation

1. Suspend execution of transactions temporarily.

2. Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.

4. Resume normal transaction execution.

During recovery redo or undo is required to transactions
appearing after [checkpoint] record.

March 24, 2008 ADBS: The course 16

- Recovery Schemes

Deferred Update (No Undo/Redo)

Deferred Update in a single-user system

Deferred Update with concurrent users

Recovery Techniques Based on Immediate Update

March 24, 2008 ADBS: The course 17

-- Deferred Update (No Undo/Redo)

The data update goes as follows:

A set of transactions records their updates in the log.

At commit point under WAL scheme these updates are saved
on database disk.

After reboot from a failure the log is used to redo all the
transactions affected by this failure. No undo is required because
no AFIM is flushed to the disk before a transaction commits.

March 24, 2008 ADBS: The course 18

-- Deferred Update in a single-user system

There is no concurrent data sharing in a single user system. The
data update goes as follows

1. A set of transactions records their updates in the log.

2. At commit point under WAL scheme these updates are saved
on database disk.

After reboot from a failure the log is used to redo all the
transactions affected by this failure. No undo is required because
no AFIM is flushed to the disk before a transaction commits.

March 24, 2008 ADBS: The course 19

-- Deferred Update in a single-user system

(a) T1 T2
read_item (A) read_item (B)
read_item (D) write_item (B)
write_item (D) read_item (D)

write_item (A)
(b)

[start_transaction, T1]
[write_item, T1, D, 20]
[commit T1]
[start_transaction, T1]
[write_item, T2, B, 10]
[write_item, T2, D, 25] ← system crash

The [write_item, …] operations of T1 are redone.
T2 log entries are ignored by the recovery manager.

March 24, 2008 ADBS: The course 20

-- Deferred Update with concurrent users …

T1

T3 T4 T5

system crash
Time

T2

t1 t2
checkpoint

T1: No need to do anything for it committed before checkpoint.
T2 and T3: are redone
T4 and T5: Ignored

Note: In deferred updates, data disk are updated after transaction commit

March 24, 2008 ADBS: The course 21

…-- Deferred Update with concurrent users …

(a) T1 T2 T3 T4
read_item (A) read_item (B) read_item (A) read_item (B)
read_item (D) write_item (B) write_item (A) write_item (B)
write_item (D) read_item (D) read_item (C) read_item (A)

write_item (D) write_item (C) write_item (A)

(b) [start_transaction, T1]
[write_item, T1, D, 20]
[commit, T1]
[checkpoint]
[start_transaction, T4]
[write_item, T4, B, 15]
[write_item, T4, A, 20]
[commit, T4]
[start_transaction T2]
[write_item, T2, B, 12]
[start_transaction, T3]
[write_item, T3, A, 30]
[write_item, T2, D, 25] ← system crash

T2 and T3 are ignored because they did not reach their commit points.
T4 is redone because its commit point is after the last checkpoint.

March 24, 2008 ADBS: The course 22

…-- Deferred Update with concurrent users …

Two tables are required for implementing this protocol:

Active table: All active transactions are entered in this table.

Commit table: Transactions to be committed are entered in
this table.

During recovery, all transactions of the commit table are redone
and all transactions of active tables are ignored since none of
their AFIMs reached the database. It is possible that a commit
table transaction may be redone twice but this does not create
any inconsistency because of a redone is “idempotent”, that is,
one redone for an AFIM is equivalent to multiple redone for the
same AFIM.

March 24, 2008 ADBS: The course 23

-- Recovery Techniques Based on Immediate Update …

Undo/No-redo Algorithm

In this algorithm AFIMs of a transaction are flushed to the
database disk under WAL before it commits. For this reason
the recovery manager undoes all transactions during recovery.

No transaction is redone.

It is possible that a transaction might have completed
execution and ready to commit but this transaction is also
undone.

March 24, 2008 ADBS: The course 24

… -- Recovery Techniques Based on Immediate Update …

Undo/Redo Algorithm (Single-user environment)

Recovery schemes of this category apply undo and also redo for
recovery.

In a single-user environment no concurrency control is required but a
log is maintained under WAL.

Note that at any time there will be one transaction in the system and
it will be either in the commit table or in the active table.

The recovery manager performs:

1. Undo of a transaction if it is in the active table.

2. Redo of a transaction if it is in the commit table.

March 24, 2008 ADBS: The course 25

… - Recovery Techniques Based on Immediate Update

Undo/Redo Algorithm (Concurrent execution)

Recovery schemes of this category applies undo and also redo to
recover the database from failure.

In concurrent execution environment a concurrency control is required
and log is maintained under WAL.

Commit table records transactions to be committed and active table
records active transactions.

To minimize the work of the recovery manager checkpointing is used.

The recovery performs:

1. Undo of a transaction if it is in the active table.

2. Redo of a transaction if it is in the commit table.

March 24, 2008 ADBS: The course 26

END

