
March 24, 2008 ADBS: Transactions 1

Introduction to Transaction
Processing Concepts and Theory

Chapter 17

March 24, 2008 ADBS: Transactions 2

Chapter Outline

Introduction to Transaction Processing

Transaction and System Concepts

Desirable Properties of Transactions

Concurrent executions

March 24, 2008 ADBS: Transactions 3

- Introduction to Transaction Processing …

System Model:
Multiuser System: Many users can access the system
concurrently.
Concurrency

Interleaved processing: concurrent execution of
processes is interleaved in a single CPU

March 24, 2008 ADBS: Transactions 4

… - Introduction to Transaction Processing …

A Transaction: logical unit of database processing that includes one
or more access operations (read -retrieval, write - insert or update,
delete).

A transaction (set of operations) may be stand-alone specified
in a high level language like SQL submitted interactively, or may be
embedded within a program.

Transaction boundaries: Begin and End transaction.

An application program may contain several transactions
separated by the Begin and End transaction boundaries.

March 24, 2008 ADBS: Transactions 5

… - Introduction to Transaction Processing …

SIMPLE MODEL OF A DATABASE (for purposes of discussing
transactions):

A database - collection of named data items

Granularity of data - a field, a record , or a whole disk block
(Concepts are independent of granularity)

Basic operations are read and write

read_item(X): Reads a database item named X into a program
variable. To simplify our notation, we assume that the program
variable is also named X.

write_item(X): Writes the value of program variable X into the
database item named X.

March 24, 2008 ADBS: Transactions 6

-- Read Operation

Basic unit of data transfer from the disk to the computer main
memory is one block. In general, a data item (what is read or
written) will be the field of some record in the database,
although it may be a larger unit such as a record or even a whole
block.

read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block
is not already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

March 24, 2008 ADBS: Transactions 7

-- Write Operation

write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block
is not already in some main memory buffer).

3. Copy item X from the program variable named X into its correct
location in the buffer.

4. Store the updated block from the buffer back to disk (either
immediately or at some later point in time).

March 24, 2008 ADBS: Transactions 8

-- A Sample transaction

Transaction to transfer $50 from account A to account B:

read(A)
A := A – 50
write(A)
read(B)
B := B + 50
write(B)

March 24, 2008 ADBS: Transactions 9

- Why recovery is needed …

1. A computer failure (system crash): A hardware or software
error occurs in the computer system during transaction execution.
If the hardware crashes, the contents of the computer’s internal
memory may be lost.

2. A transaction or system error : Some operation in the
transaction may cause it to fail, such as integer overflow or
division by zero. Transaction failure may also occur because of
erroneous parameter values or because of a logical programming
error. In addition, the user may interrupt the transaction during
its execution.

March 24, 2008 ADBS: Transactions 10

… - Why recovery is needed …

3. Local errors or exception conditions detected by the
transaction:

certain conditions necessitate cancellation of the transaction. For
example, data for the transaction may not be found. A condition,
such as insufficient account balance in a banking database, may
cause a transaction, such as a fund withdrawal from that account, to
be canceled.

a programmed abort in the transaction causes it to fail.

4. Concurrency control enforcement: The concurrency control
method may decide to abort the transaction, to be restarted
later, because it violates serializability or because several
transactions are in a state of deadlock (see Chapter 18).

March 24, 2008 ADBS: Transactions 11

… - Why recovery is needed …

5. Disk failure: Some disk blocks may lose their data because of a
read or write malfunction or because of a disk read/write head
crash. This may happen during a read or a write operation of the
transaction.

6. Physical problems and catastrophes: This refers to an
endless list of problems that includes power or air-conditioning
failure, fire, theft, sabotage, overwriting disks or tapes by
mistake, and mounting of a wrong tape by the operator.

March 24, 2008 ADBS: Transactions 12

- Transaction and System Concepts …

A transaction is an atomic unit of work that is either completed
in its entirety or not done at all. For recovery purposes, the system
needs to keep track of when the transaction starts, terminates,
and commits or aborts.

Transaction states:

Active state

Partially committed state

Committed state

Failed state

Terminated State

March 24, 2008 ADBS: Transactions 13

… - Transaction and System Concepts …

March 24, 2008 ADBS: Transactions 14

… - Transaction and System Concepts …

Recovery manager keeps track of the following operations
…

begin_transaction: This marks the beginning of transaction
execution.

read or write: These specify read or write operations on the
database items that are executed as part of a transaction.

end_transaction: This specifies that read and write
transaction operations have ended and marks the end limit of
transaction execution. At this point it may be necessary to
check whether the changes introduced by the transaction can
be permanently applied to the database or whether the
transaction has to be aborted because it violates concurrency
control or for some other reason.

March 24, 2008 ADBS: Transactions 15

… - Transaction and System Concepts …

… Recovery manager keeps track of the following operations

commit_transaction: This signals a successful end of the
transaction so that any changes (updates) executed by the
transaction can be safely committed to the database and will
not be undone.

rollback (or abort): This signals that the transaction has
ended unsuccessfully, so that any changes or effects that the
transaction may have applied to the database must be undone.

March 24, 2008 ADBS: Transactions 16

… - Transaction and System Concepts …

Recovery techniques use the following operators:

undo: Similar to rollback except that it applies to a single operation
rather than to a whole transaction.

redo: This specifies that certain transaction operations must be redone
to ensure that all the operations of a committed transaction have been
applied successfully to the database.

March 24, 2008 ADBS: Transactions 17

… - Transaction and System Concepts …

The System Log …

Log or Journal : The log keeps track of all transaction
operations that affect the values of database items. This
information may be needed to permit recovery from transaction
failures. The log is kept on disk, so it is not affected by any type
of failure except for disk or catastrophic failure. In addition, the
log is periodically backed up to archival storage (tape) to guard
against such catastrophic failures.

T in the following discussion refers to a unique transaction-id
that is generated automatically by the system and is used to
identify each transaction:

March 24, 2008 ADBS: Transactions 18

… - Transaction and System Concepts …

… The System Log - Types of log record:

1. [start_transaction,T]: Records that transaction T has
started execution.

2. [write_item,T,X,old_value,new_value]: Records that
transaction T has changed the value of database item X from
old_value to new_value.

3. [read_item,T,X]: Records that transaction T has read the
value of database item X.

4. [commit,T]: Records that transaction T has completed
successfully, and affirms that its effect can be committed
(recorded permanently) to the database.

5. [abort,T]: Records that transaction T has been aborted.

March 24, 2008 ADBS: Transactions 19

… - Transaction and System Concepts …

Recovery using log records:

If the system crashes, we can recover to a consistent
database state by examining the log and using one of the
techniques described in Chapter 19.

1. Because the log contains a record of every write operation that
changes the value of some database item, it is possible to undo
the effect of these write operations of a transaction T by tracing
backward through the log and resetting all items changed by a
write operation of T to their old_values.

2. We can also redo the effect of the write operations of a
transaction T by tracing forward through the log and setting all
items changed by a write operation of T (that did not get done
permanently) to their new_values.

March 24, 2008 ADBS: Transactions 20

… - Transaction and System Concepts …

Commit Point of a Transaction: …

Definition: A transaction T reaches its commit point when
all its operations that access the database have been executed
successfully and the effect of all the transaction operations on
the database has been recorded in the log. Beyond the
commit point, the transaction is said to be committed, and
its effect is assumed to be permanently recorded in the
database. The transaction then writes an entry [commit,T]
into the log.

Roll Back of transactions: Needed for transactions that
have a [start_transaction,T] entry into the log but no commit
entry [commit,T] into the log.

March 24, 2008 ADBS: Transactions 21

… - Transaction and System Concepts …

… Commit Point of a Transaction:

Redoing transactions: Transactions that have written their
commit entry in the log must also have recorded all their write
operations in the log; otherwise they would not be committed,
so their effect on the database can be redone from the log
entries. (Notice that the log file must be kept on disk. At the
time of a system crash, only the log entries that have been
written back to disk are considered in the recovery process
because the contents of main memory may be lost.)

Force writing a log: before a transaction reaches its commit
point, any portion of the log that has not been written to the
disk yet must now be written to the disk. This process is called
force-writing the log file before committing a transaction.

March 24, 2008 ADBS: Transactions 22

- Desirable Properties of Transactions

ACID properties:

Atomicity: A transaction is an atomic unit of processing; it is
either performed in its entirety or not performed at all.

Consistency preservation: A correct execution of the transaction
must take the database from one consistent state to another.

Isolation: A transaction should not make its updates visible to
other transactions until it is committed; this property, when
enforced strictly, solves the temporary update problem and makes
cascading rollbacks of transactions unnecessary (see Chapter 21).

Durability or permanency: Once a transaction changes the
database and the changes are committed, these changes must
never be lost because of subsequent failure.

March 24, 2008 ADBS: Transactions 23

-- Example of Fund Transfer …

Transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Consistency requirement – the sum of A and B is unchanged by
the execution of the transaction.

Atomicity requirement — if the transaction fails after step 3 and
before step 6, the system should ensure that its updates are
not reflected in the database, else an inconsistency will result.

March 24, 2008 ADBS: Transactions 24

… -- Example of Fund Transfer

Durability requirement — once the user has been notified that
the transaction has completed (i.e., the transfer of the $50 has
taken place), the updates to the database by the transaction
must persist despite failures.

Isolation requirement — if between steps 3 and 6, another
transaction is allowed to access the partially updated database,
it will see an inconsistent database
(the sum A + B will be less than it should be).
Can be ensured trivially by running transactions serially, that is
one after the other. However, executing multiple transactions
concurrently has significant benefits, as we will see.

March 24, 2008 ADBS: Transactions 25

- Concurrent Executions

Multiple transactions are allowed to run concurrently in the
system. Advantages are:

increased processor and disk utilization, leading to better
transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk

reduced average response time for transactions: short
transactions need not wait behind long ones.

Concurrency control schemes – mechanisms to achieve isolation,
i.e., to control the interaction among the concurrent transactions
in order to prevent them from destroying the consistency of the
database

March 24, 2008 ADBS: Transactions 26

-- Why Concurrency Control is needed …

The Lost Update Problem.
This occurs when two transactions that access the same database
items have their operations interleaved in a way that makes the
value of some database item incorrect.

The Temporary Update (or Dirty Read) Problem.
This occurs when one transaction updates a database item and
then the transaction fails for some reason (see Section 17.1.4).
The updated item is accessed by another transaction before it is
changed back to its original value.

The Incorrect Summary Problem .
If one transaction is calculating an aggregate summary function on a
number of records while other transactions are updating some of these
records, the aggregate function may calculate some values before they
are updated and others after they are updated

March 24, 2008 ADBS: Transactions 27

-- The lost update problem

March 24, 2008 ADBS: Transactions 28

-- The temporary update problem

March 24, 2008 ADBS: Transactions 29

-- incorrect summary problem

March 24, 2008 ADBS: Transactions 30

-- Schedules

Schedules – sequences that indicate the chronological
order in which instructions of concurrent transactions
are executed

a schedule for a set of transactions must consist of all
instructions of those transactions

must preserve the order in which the instructions appear in
each individual transaction.

March 24, 2008 ADBS: Transactions 31

--- Example Schedules …

Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance
from A to B. The following is a serial schedule, in which T1 is
followed by T2.

Schedule 1

March 24, 2008 ADBS: Transactions 32

… --- Example Schedule …

Let T1 and T2 be the transactions defined previously. The following
schedule is not a serial schedule, but it is equivalent to Schedule 1.

Schedule 2

In both Schedule 1 and 2, the sum A + B is preserved.

March 24, 2008 ADBS: Transactions 33

… --- Example Schedules

The following concurrent schedule does not preserve the value of
the the sum A + B.

March 24, 2008 ADBS: Transactions 34

-- Serializability …

Basic Assumption – Each transaction preserves database
consistency.
Thus serial execution of a set of transactions preserves database
consistency.
A (possibly concurrent) schedule is serializable if it is equivalent to a
serial schedule. Different forms of schedule equivalence give rise to
the notions of:
1. conflict serializability
2. view serializability

We ignore operations other than read and write instructions, and
we assume that transactions may perform arbitrary computations on
data in local buffers in between reads and writes. Our simplified
schedules consist of only read and write instructions.

March 24, 2008 ADBS: Transactions 35

… -- Serializability

March 24, 2008 ADBS: Transactions 36

--- Conflict Serializability …

Instructions li and lj of transactions Ti and Tj respectively, conflict
if and only if there exists some item Q accessed by both li and lj,
and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal
order between them. If li and lj are consecutive in a schedule and
they do not conflict, their results would remain the same even if
they had been interchanged in the schedule.

March 24, 2008 ADBS: Transactions 37

… --- Conflict Serializability …

If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that
S and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule

March 24, 2008 ADBS: Transactions 38

… --- Conflict Serializability …

Schedule 3 below can be transformed into Schedule 1, a serial
schedule where T2 follows T1, by series of swaps of non-conflicting
instructions. Therefore Schedule 3 is conflict serializable.

3 1

March 24, 2008 ADBS: Transactions 39

… --- Conflict Serializability

Example of a schedule that is not conflict serializable:

T3 T4

read(Q)
write(Q)

write(Q)

We are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

March 24, 2008 ADBS: Transactions 40

-- Recoverability …

Recoverable schedule — if a transaction Tj reads a data items
previously written by a transaction Ti , the commit operation of Ti
appears before the commit operation of Tj.
The following schedule is not recoverable if T9 commits
immediately after the read

If T8 should abort, T9 would have read (and possibly shown to the
user) an inconsistent database state. Hence database must
ensure that schedules are recoverable.

March 24, 2008 ADBS: Transactions 41

… -- Recoverability …

Cascading rollback – a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work

March 24, 2008 ADBS: Transactions 42

… -- Recoverability

Cascadeless schedules — cascading rollbacks cannot occur; for
each pair of transactions Ti and Tj such that Tj reads a data item
previously written by Ti, the commit operation of Ti appears before
the read operation of Tj.

Every cascadeless schedule is also recoverable

Schedules must be conflict serializable and recoverable, for the sake
of database consistency, and preferably cascadeless.

Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur.

For example: A policy in which only one transaction can execute at a
time generates serial schedules of less overhead, but provides a poor
degree of concurrency.

March 24, 2008 ADBS: Transactions 43

-- Testing for Serializability …

Consider some schedule of a set of transactions T1, T2, ..., Tn

Precedence graph — a direct graph where the vertices are the
transactions (names).

We draw an arc from Ti to Tj if the two transaction conflict, and Ti
accessed the data item on which the conflict arose earlier.

We may label the arc by the item that was accessed.

March 24, 2008 ADBS: Transactions 44

… -- Testing for Serializability

T1 T2

read(Q)
write(Q)
Read(P)

Write(P)

Q

P

March 24, 2008 ADBS: Transactions 45

-- Example Schedule (Schedule A)

T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

March 24, 2008 ADBS: Transactions 46

--- Precedence Graph for Schedule A

T3
T4

T1 T2

March 24, 2008 ADBS: Transactions 47

-- Test for Conflict Serializability

A schedule is conflict serializable if and only if its precedence graph
is acyclic.

Cycle-detection algorithms exist which take order n2 time, where n
is the number of vertices in the graph. (Better algorithms take
order n + e where e is the number of edges.)

If precedence graph is acyclic, the serializability order can be
obtained by a topological sorting of the graph. This is a linear
order consistent with the partial order of the graph.
For example, a serializability order for Schedule A would be
T5 → T1 → T3 → T2 → T4 .

March 24, 2008 ADBS: Transactions 48

-- Concurrency Control vs. Serializability Tests

Testing a schedule for serializability after it has executed is a little
too late!

Goal – to develop concurrency control protocols that will assure
serializability. They will generally not examine the precedence
graph as it is being created; instead a protocol will impose a
discipline that avoids nonseralizable schedules.
Will study such protocols in Chapter 18.

Tests for serializability help understand why a concurrency control
protocol is correct.

March 24, 2008 ADBS: Transactions 49

End

