
Functional Dependency

- Definition of FD +
- Inference Rules for Functional Dependency (FD)
- Types of FDs +

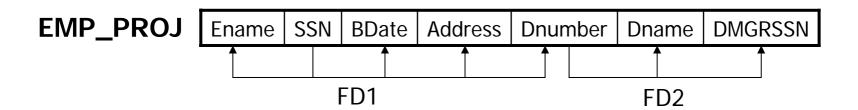
- Describes the relationship between attributes in a relation.
- For example, if A and B are attributes of relation R, B is functionally dependent on A (denoted A → B), if each value of A in R is associated with exactly one value of B in R.
- Functional dependency is a property of the meaning or semantics of the attributes in a relation.
- The *determinant* of a functional dependency refers to the attribute or group of attributes on the left-hand side of the arrow.
- Diagrammatic representation.

EMP_PROJ SSN Pnumber Hours Ename Pname Plocation

- From the semantics of the attributes, we know the following functional dependency should hold
 - SSN \rightarrow Ename
 - Pnumber \rightarrow {Pname, Location}
 - $\{SSN, Pnumber\} \rightarrow Hours$

- A functional dependency is a property of the relation schema (intension) R, not of a particular legal relation state (extension) of R.
- The figure below show a particular state of the TEACH relation.

TEACH	Teacher	Course	Text
	Adel	Databases	Al-Masri
	Adel	Data Structures	Al-Nour
	Hani	Operating Systems	Khan
	Baker	Java	Ahmed

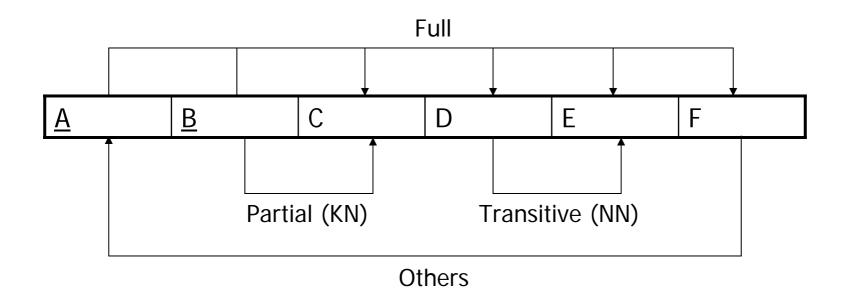

From the above state of TEACH we may conclude that Text \rightarrow Course, we can not confirm this unless we know that it is true for all possible legal states of TEACH.

- The set of FDs for a relation schema R are denoted by F.
- There could be other FDs that can be inferred from R.
- The set of all FDs (specified or deduced) is called the closure of F and is denoted by F+.

Consider the relation schema EMP_PROJ in the figure below:

- We can infer the following addition FDs from F:
 - FD1 = {SSN → {Ename, BDate, Address, Dnumber}}
 - FD2 = {Dnumber \rightarrow {Dname, DMGRSSN}}
 - FD3 = {SSN → {Dname, DMGRSSN}}
 - FD4 = {SSN → SSN}
 - FD5 = {Dnumber → Dname}

- An FD X → Y is inferred from a set of dependencies F specified on R if X → Y holds in every relation state r that is a legal extension of R; that is whenever r satisfies all the dependencies in F, X → Y also holds in r.
- The closure of F is the set of all functional dependencies that can be inferred from F.
- A set of inference rules that can be used to infer new dependencies from a given set of dependencies.



- The following six rules (IR1 through IR6) are well-known inference rules for FDs.
 - 1. IR1 Reflective rule: $Y \subseteq X$ then $X \rightarrow Y$.
 - 2. IR2 Augmentation rule: $X \rightarrow Y$, then $XZ \rightarrow YZ$.
 - 3. IR3 Transitive rule: $\{X \rightarrow Y, Y \rightarrow Z\}$ then $X \rightarrow Z$
 - 4. IR4 Decomposition or projective, rule: $\{X \rightarrow YZ\}$ then $X \rightarrow Z$
 - 5. IR5 Union or additive, rule: $\{X \rightarrow Y, X \rightarrow Z\}$ then $X \rightarrow YZ$
 - 6. IR6 Pseudo transitive rule: $\{X \rightarrow Y, WY \rightarrow Z\}$ then $WX \rightarrow Z$

- <u>Definition</u>: X is a key attribute if it is a member of the primary key attributes otherwise it is a non-key attribute.
- Types of FD:
 - FD X → Y is a full FD if you remove any attribute A from X the dependency doesn't hold any more. {X-A} → Y is no longer true.
 - FD $X \rightarrow Y$ is a **partial FD** if X is a key attributes and Y is not.
 - FD $X \rightarrow Y$ is a **transitive FD** if both X and Y are non-key attributes.
 - The last type of FD, $X \rightarrow Y$, is when Y is a key attribute and X is not.

The concept of FDs will form the basis for our next topic Normalization.