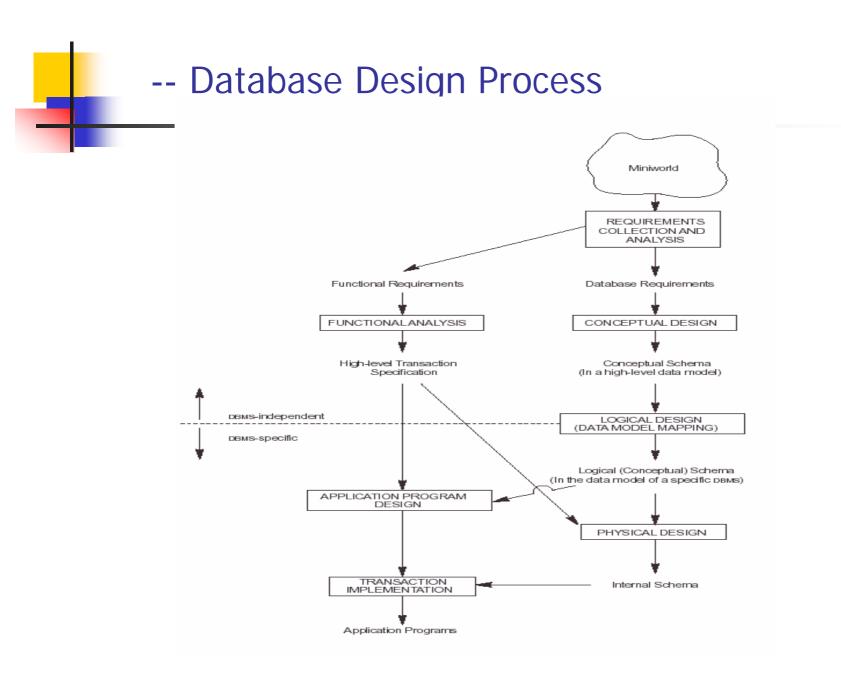
INTRODUCTION TO CONCEPTUAL DATA MODELING


- Introduction +
- Database Design Process +
- Requirements +
- Conceptual Design +
- Entity-Relationship Model +

- A database application refers to a particular database and the associated programs that implement the database queries and update.
 - Example: A bank database application consists of the customer data of the bank in addition to the programs that will implenet all the customer transactions such as deposit and withdrawal.
- Designing a Database application involves designing
 - The database
 - And the associated programs.

- The first two steps in designing a database are:
 - Collecting and analyzing requirements
 - Conceptual Design

DB:Intro. to Concptual DM

- The first step in designing a database is collecting, documenting, and analyzing requirements.
- In the next few slides we will show requirements of:
 - A Company Database
 - A University Database

-- Company Database Requirements ...

- The company is organized into departments.
- Each department:
 - Has a unique number
 - Has a unique name
 - Has a manager
 - May have several locations
- A department controls a number of projects.
- Each project:
 - Has a unique number
 - Has a unique name
 - Has one location
- The company stores each employee's:
 - Social security number
 - Name
 - Address
 - Salary
 - Sex
 - Date of birth

... -- Company Database Requirements

- The company:
 - Assigns an employee to one department but may work on several projects, which are not necessarily controlled by the same department
 - keeps track of the number of hours per week that an employee works on each project.
 - Keeps track of the direct supervisor of each employee
 - Keeps track on the dependants of each employee for insurance purposes. It keeps each dependants:
 - Name
 - Sex
 - Birth date
 - Relationship to employee

-- University Database Requirements ...

- The university keeps track of each student
 - Unique number
 - Unique social security number
 - Name
 - current address
 - Current phone
 - Permanent address
 - City
 - State
 - Zip code
 - Permanent phone
 - Birth date
 - Sex
 - Class (freshman, sophomore, ...)
 - Department
 - Degree program (BA, BS, ..., PhD)
- The university also keeps track of each department
 - Name (unique)
 - Department code (unique)
 - Office number
 - Office phone
 - collage

-- University Database Requirements ...

• Each course has:

- Name
- Description
- Number (unique)
- Number of semester hours
- Level
- Offering department
- Each section has:
 - Number (unique per semester per course)
 - Semester
 - Year
 - Course
 - An instructor
- Each grade report has:
 - student number
 - section number
 - letter grade
 - Numeric grade (0, 1, 3, or 4)

- Conceptual modeling +
- Entity-Relationship model +

-- Conceptual Modeling

- Once the requirements have being collected and analyzed, the next step is to create a conceptual schema for the database.
- A Conceptual schema is a concise description of the data requirements of the user and it contains:
 - Detailed description of the entity types
 - Relationships
 - constraints
- Conceptual schema is created using a high level conceptual data model
- Here, we will present the Entity-Relationship model, which is a popular high-level conceptual model, and we will use it in designing a database application.

- Entity Relationship Model

- Definition +
- Entities +
- Attributes +

- The Entity-Relationship (ER) model is a high-level conceptual data model that is widely used in the design of a database application.
- The ER model represents data in terms of:
 - Entities
 - Attributes of entities
 - **Relationships** between entities

- An entity is an object or a concept that is identified by the enterprise as having an independent existence.
- There are two types of entities:
 - Physical entities
 - Example: car, house, employee, part, supplier
 - Conceptual entities
 - Example: job, university course, sale, work experience

-- Entities of Company & University Databases

• Entities of:

- Company database
 - Employees
 - Departments
 - Projects
 - Dependents
- University Database
 - Students
 - Departments
 - Courses
 - Sections
 - Grade reports

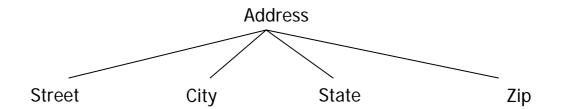
- Definition +
- Types of attributes +

--- Definition

- An attribute is a property that describes an entity.
- Example:
 - The attributes of the entity CAR are:
 - Make
 - Chassis number
 - Color
 - The attributes of the entity EMPLOYEE are:
 - Name
 - Date of birth
 - Address
- There are many types of attributes.

--- Types of Attributes

- Simple Vs Composite Attributes +
- Single-valued Vs Multi-valued Attributes +
- Derived Vs Stored Attributes +
- Complex attributes +


---- Simple Vs Composite Attributes

• A simple attribute:

- Consists of a single component with an independent existence.
 - Example: The **Sex** attribute of an EMPLOYEE entity

• A composite attribute:

- Consists of multiple components each with an independent existence.
 - <u>Example</u>: The Address attribute of an EMPLOYEE entity can be divided into Street, City, State, Zip.

---- Single-valued Vs Multi-valued Attributes

Single-valued attribute:

- Holds a single value for a single entity.
 - Example: the **Sex** attribute of an EMPLOYEE entity.
- Multi-valued attribute:
 - An attribute that holds more than one value for a single entity.
 - Example: The **Color** attribute of a CAR entity.

Derived attribute:

- Is an attribute that represents a value that is derived from the value of a related attribute or set of attributes not necessarily in the same entity.
 - <u>Example 1</u>: The value of the Age attribute of the EMPLOYEE entity can be derived from the today's date and the value of the employee BirthDate.
 - <u>Example 2</u>: The NumberofEmployees attribute of a DEPARTMENT entity can be derived from the EMPLOYEE table by counting the number of employees who work in that department.

• Stored attribute:

- Is an attribute that is not derived but which is directly stored in the entity.
 - Example: The Sex attribute in the EMPLOEE entity.

- Is an attribute that is a nested combination of composite and multi-valued attributes in an arbitrary way.
 - <u>Example</u>: The complex attribute AddressPhone.

{AdressPhone({Phone(AreaCode, PhoneNumber)},
Address(StreetAddress(Number, Name, HouseNumber),
City, State, Zip))}

- Note:
 - Comma is used for separating the components
 - Represents multi-valued attributes
 - () is used for arbitrary nesting and grouping