Relational Algebra

Objectives

- Introduction to Relational Algebra +
- Relational Algebra Operations +
- Summary +
- Example Queries +

- Introduction To Relational Algebra ...

- Relational algebra is a set of operations that enable the user to specify basic retrieval requests. Each operation produces results which is a relation.
- Relational algebra expression is a sequence of relational algebra operations whose result will also be a relation.
- There are two groups of relational algebra operations:
- Operations developed specifically for relational database, such as SELECT, PROJECT, and JOIN.
- Operations from mathematical set theory, such as UNION, SET DIFFERENCE, INTERSECTION, CARTESIAN PRODUCT, and DIVISION

... - Introduction To Relational Algebra

- Set theoretic operations are used to merge the tuples of two relations. These are binary operations.
- Some set theoretic operations require both relations must be union compatible.
- Union compatible relations should have the same degree and each pair of corresponding attribute should have the same domain.
These include:
- UNION
- SET DIFFERENCE
- INTERSECTION
- CARTESIAN PRODUCT is another set theoretic operation which doesn't require union compatibility.

- Relational Algebra Operations

- Select +
- Project +
- Rename +
- Union +
- Difference +
- Intersection +
- Division +
- Assignment +
- Cartesian Product +
- Join +
- Outer Union +
- Composition of Operators +
- Aggregate Functions +
- Null Values +

-- Select Operation

- SELECT operation is used to select a subset of the tuples from the relation that satisfies the select condition.
- It is denoted by: $\sigma_{p}(r)$
- p is called the selection predicate (SELECT condition)
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : ^ (and), \vee (or), \neg (not)
Each term is one of:
<attribute> op <attribute> or <constant>
where $o p$ is one of: $=, \neq,>, \geq,<, \leq$

- Example of selection: $\sigma_{\text {name="Adii" }}($ EMPLOYEE)

--- Select Operation - Example

--- Characteristics of SELECT Operation

- The select condition is applied independently to each tuple t in r. If the condition is true, then tuple t is selected and will appear in the resulting relation.
- The SELECT operation is unary, it is applied to a single relation.
- The degree of resulting relation is the same as r.
- The cardinality of resulting relation is less than or equal to r.
- The SELECT operation is cumulative. A sequence of SELECT operations can be applied in any order.
- $\sigma<$ cond1> $(\sigma<$ cond2> $(r))=\sigma<$ cond2> $(\sigma$ <cond1> (r))
- A cascade of SELECT operations can be combined into a single SELECT operation with a conjunctive (^) condition.
- $\sigma<$ cond $1>(\ldots(\sigma<$ condn $>(r))=\sigma<$ cond1>^<cond2> $\ldots<$ condn $>(r)$

-- Project Operation

- Is used to select some attributes from a relation.
- Is denoted by:

$$
\Pi<a t t r i b u t e ~ l i s t>(r)
$$

where <attribute list> are attribute names and r is a relation algebra expression

- The result is defined as the relation of <attribute list> columns obtained by erasing the columns that are not listed
- Example: To eliminate the name attribute of DEPARTMENT

$$
\Pi_{\text {number }}(D E P A R T M E N T)
$$

--- Project Operation - Example

--- Characteristics of PROJECT Operation

- The result of a PROJECT operation will be a relation consisting of the attributes specified in the <attribute list> in the same order.
- The degree is equal to the number of attributes in the list.
- The projection operations removes any duplicates.
- The cardinality of the resulting relation is always less than or equal to the cardinality of r.
- For a cascade of PROJECT operations, only the outermost need to be considered for evaluation. If <list1> $\subseteq<$ list2> $\subseteq \ldots \subseteq<$ listn $>\subseteq$ r, then
- \quad <list1>($\Pi<$ list2>(... ($\Pi<$ listn>(r) $))=\Pi<$ list1>(r)

-- Rename Operation

- The rename operation (ρ) allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name. Example:

$$
\rho_{s}(r)
$$

returns the expression r under the name s

- If a relational-algebra expression r has arity n, then

$$
\rho_{s(A 1, A 2, \ldots, A n)}(r)
$$

returns the result of expression r under the name s, and with the attributes renamed to $A 1, A 2, \ldots ., A n$.

--- Rename Operations: Example

-- Union Operation

- Is denoted by: $r \cup s$
- Is defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- The result of $r \cup s$ will include all tuples which are either in r or in s or in both.
- For $r \cup s$ to be valid r and \mathbf{s} must be union compatible
- Union operation is:
- Commutative: $r \cup s=s \cup r$
- Associative: $r \cup(s \cup w)=(r \cup s) \cup w$
- E.g. to find all the names of faculty and students in the FACULTY and STUDENT tables: $\quad \Pi_{\text {name }}(F A C U L T Y) \cup \Pi_{\text {name }}(S T U D E N T)$

--- Union Operation - Example

No Duplicates

-- Set Difference Operation

- Is denoted by: r - s
- IS defined as: $r-s=\{t \mid t \in r$ and $\mathrm{t} \notin s\}$
- The result of $r-s$ will include all the tuples that are in r but not in s.
- r and s must be union compatible
- this operation operation is neither Commutative nor Associative.

--- Set Difference Operation - Example

-- Set-Intersection Operation

- Is denoted by: $r \cap s$
- Is defined as: $r \cap s=\{t \mid t \in r$ and $t \in s\}$
- The result of $r \cap s$ will include all the tuples that are in both r and s.
- r and s must be union compatible.
- Intersection is:
- Commutative: $r \cap s=s \cap r$
- Associative: $r \cap(s \cap w)=(r \cap s) \cap w$
- Note: $r \cap s=r-(r-s)$

--- Set-Intersection Operation - Example

-- Division Operation ...

- Is denoted by: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where
- $R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$
- $S=\left(B_{1}, \ldots, B_{n}\right)$

The result of $\mathrm{r} \div \mathrm{s}$ is a relation on schema $R-S=\left(A_{1}, \ldots, A_{m}\right)$

$$
r \div s=\left\{t \mid t \in \Pi_{R-S}(r) \wedge \forall u \in s(t u \in r)\right\}
$$

－－－Division Operation－Example1

	\triangle
Nトのカんトトゥ	－
$\boldsymbol{\sim}$ の	＋

--- Division Operations: Example 2

\boldsymbol{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\boldsymbol{E}
α	\mathbf{a}	α	\mathbf{a}	$\mathbf{1}$
α	\mathbf{a}	γ	\mathbf{a}	$\mathbf{1}$
α	\mathbf{a}	γ	\mathbf{b}	$\mathbf{1}$
β	\mathbf{a}	γ	\mathbf{a}	$\mathbf{1}$
β	\mathbf{a}	γ	\mathbf{b}	$\mathbf{3}$
γ	\mathbf{a}	γ	\mathbf{a}	$\mathbf{1}$
γ	\mathbf{a}	γ	\mathbf{b}	$\mathbf{1}$
γ	\mathbf{a}	β	\mathbf{b}	$\mathbf{1}$
$\boldsymbol{\Gamma}$				

... -- Division Operation

- Property
- Let $q=r \div s$
- Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let $r(R)$ and $s(S)$ be relations, and let $S \subseteq R$

$$
r \div s=\Pi_{R-S}(r)-\Pi_{R-S}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)
$$

To see why

- $\Pi_{R-S, S}(r)$ simply reorders attributes of r
- $\left.\Pi_{R-S}\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)$ gives those tuples t in
$\Pi_{R-S}(r)$ such that for some tuple $u \in S, t u \notin r$.

-- Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries.
- Write query as a sequential program consisting of
- a series of assignments
- followed by an expression whose value is displayed as a result of the query.
- Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$
\begin{aligned}
& \text { temp } 1 \leftarrow \Pi_{R-S}(r) \\
& \text { temp } 2 \leftarrow \Pi_{R-S}\left((\text { temp1 } 1 \times s)-\Pi_{R-S, S}(r)\right) \\
& \text { result }=\text { temp } 1-\text { temp } 2
\end{aligned}
$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.
- May use variable in subsequent expressions.

--- Assignment Operation - Example

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	
α	10	1	
α	20	1	
β	30	1	
β	40	2	
$\boldsymbol{\Gamma}$			

Temp1

-- Cartesian-Product Operation

- Is denoted by: rxs
- Is defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- The result of $r \times s$ will combine tuples from both r and s in a combinatorial fashion.
- Assume that attributes of $\mathrm{r}(\mathrm{A})$ and $\mathrm{s}(\mathrm{B})$ are disjoint. (That is, $A \cap B=\varnothing$).
- If attributes of $r(A)$ and $s(B)$ are not disjoint, then renaming must be used.

--- Cartesian-Product Operation-Example

--- Characteristics of Cartesian-Product Operation

- Degree r X s = degree(r) + degree(s)
- Cardinality of $\mathrm{rXs}=$ cardinality(r) * cardinality(s)
- Generally the result of CARTESIAN PRODUCT is meaningless unless is followed by SELECT, and is called JOIN.

-- JOIN

- Join Operation combine related tuples from two relations into a single tuple based on join condition.
- Its is denoted by: $\mathrm{r} \boxtimes<$ join condition>S

--- Characteristic of the Join Operation

- Degree of the $r \boxtimes s=$ degree $(r)+$ degree(s).
- Cardinality of $r \boxtimes s$ is between 0 and cardinality $(r)^{*}$ cardinality(s).
- The order of attributes in $r \boxtimes s$ is $\left\{A_{1}, A_{2}, \ldots, A_{n}, B_{1}\right.$, $\left.\mathrm{B}_{2}, \ldots, \mathrm{~B}_{m}\right\}$ where $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{n}$ attributes of r and B_{1}, $\mathrm{B}_{2}, \ldots, \mathrm{Bm}$ are attributes of s.
- The resulting relation has one tuple for each combination of tuples - one from r and one for swhenever the combination satisfies the join condition.

--- Types of Join Operation

- Theta join +
- Equijoin +
- Natural join +
- Outer Join +
- Left Outer Join +
- Right Outer Join +
- Full Outer Join +

--- Tables Used in Coming Examples

- The following two tables will be used in coming examples.

Ioan	loan-number branch-name L-170 amount L-120 L-230 Khobar Riyadh 3000 L-260	Dammam	4000
	1700		

	Customer-name	loan-number
borrower	Adel	L-170
	Sami	L-230
	Hashem	L-155

--- Theta Join

- Its is denoted by: $\mathrm{r} \mathrm{Z}_{<\text {r.A } A \text { s.B> } \mathrm{S}}$

Where $\theta=\{=, \neq,<,>, \leq, \geq\}$
loan $X_{\text {loan-number }=\text { loan-number }}$ Borrower

Loan-number	Branch-name	amount	Customer-name	Loan-number
L-170	Khobar	3000	Adel	L-170
L-230	Riyadh	4000	Sami	L-230

--- Equijoin

- The most common join involves join conditions with equality comparisons, where θ is $=$. This special type of Theta join is called Equijoin.

--- Equijoin

- The most common join involves join conditions with equality comparisons, where θ is $\{=\}$. This special type of Theta join is called Equijoin.
- Its is denoted by: $\mathrm{r} Z<r . A=s . B>\mathrm{s}$

loan	Ioan-number = loan-number Borrower			
Loan-number	Branch-name	amount	Customer-name	Loan-number
L-170	Khobar	3000	Adel	L-170
L-230	Riyadh	4000	Sami	L-230

- The problem with Equijoin is Pairs of attributes with identical values in evey tuple.

--- Natural-Join Operation

- Is denoted by: $r^{*} s$
- Let r and s be relations on schemas R and S respectively.

Then, $r^{*} s$ is a relation on schema $R \cup S$ obtained as follows:

- Consider each pair of tuples t_{r} from r and t_{s} from s.
- If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
- t has the same value as t_{r} on r
- t has the same value as t_{s} on s
- Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

- Result schema $=(A, B, C, D, E)$
- $r^{*} s$ is defined as:

$$
\prod_{r . A, ~ r . B, ~ r . C, ~ r . D, ~ s . E ~}\left(\sigma_{r . B=s . B} \wedge r . D=s . D(r \times r)\right)
$$

---- Natural Join Operation - Example 1

---- Natural Join - Example 2

loan * Borrower			
\downarrow			
loan-number branch-name amount customer-name L-170 Khobar 3000 Adel L-230 Riyadh 4000 Sami			

- Unlike Equijoin, no pairs of attributes with identical values in evey tuple.

--- Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
- null signifies that the value is unknown or does not exist
- All comparisons involving null are (roughly speaking) false by definition.
- Will study precise meaning of comparisons with nulls later

---- Left Outer Join - Example

Ioan $\triangle \bowtie$ Borrower

loan-number	branch-name	amount	customer-name
L-170	Khobar	3000	Adel
L-230	Riyadh	4000	Sami
L-260	Dammam	1700	null

---- Right Outer Join - Example

loan \bowtie borrower

loan-number	branch-name	amount	customer-name
L-170	Khobar	3000	Adel
L-230	Riyadh	4000	Sami
L-155	null	null	Hashim

---- Full Outer Join - Example

loan $\beth \bowtie$ - borrower

loan-number	branch-name	amount	customer-name
L-170	Khobar	3000	Adel
L-230	Riyadh	4000	Sami
L-260	Dammam	1700	null
L-155	null	null	Hashim

-- OUTER UNION Operation

- Outer Union operation compute the union of two relations if the relations are partially union compatible.
- Characteristics:
- The list of compatible attributes includes a key for both relations.
- Tuples from the component relations with the same key are presented only once in the result and have values for all attributes in the result.
- The attributes that are not union compatible from either relation are kept in the result.
- Tuples that have no values for these attributes are padded with null values.
- OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the common attributes of the two relations.

--- OUTER UNION Operation: Example

Name	SSN	Dept	Advisor					
Ali	111	COE	Sami					
Adel	222	EE	Khaled					
Fahd	333	COE	Sami	\quad	Name	SSN	Dept	Rank
:---	:---	:---	:---	:---				
Sami	444	COE	FP					
Khaled	555	EE	AP	\quad	Adel	222		
:---	:---							

Name	SSN	Dept	Advisor	Rank
Ali	111	COE	Sami	null
Adel	222	EE	Khaled	TA
Fahd	333	COE	Sami	null
Sami	444	COE	null	FP
Khaled	555	EE	null	AP

-- Composition of Operation - Example

- $\Pi_{A, C}(\sigma A=B \wedge D>5(r))$

-- Aggregate Functions and Operations

- Aggregation function takes a collection of values and returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values
- Aggregate operation in relational algebra

$$
\mathrm{G} 1, \mathrm{G} 2^{2}, \ldots, \mathrm{Gn} g_{\mathrm{F} 1(\mathrm{~A} 1), \mathrm{F} 2(\mathrm{~A} 2), \ldots, \mathrm{Fn}(\mathrm{An})}(E)
$$

- E is any relational-algebra expression
- $G_{1}, G_{2} \ldots, G_{\mathrm{n}}$ is a list of attributes on which to group (can be empty)
- Each F_{i} is an aggregate function
- Each A_{i} is an attribute name

--- Aggregate Operation - Example 1

\boldsymbol{A}	\boldsymbol{B}	\mathbf{C}
α	α	$\mathbf{7}$
α	β	$\mathbf{7}$
β	β	$\mathbf{3}$
β	β	$\mathbf{1 0}$

--- Aggregate Operation - Example 2

- Relation account grouped by branch-name:

branch-name	account-number	balance
Dammam	A-102	400
Dammam	A-201	900
Khobar	A-217	750
Khobar	A-215	750
Hafuf	A-222	700

branch-name $\boldsymbol{g}_{\text {sum(balance) }}$ (account)

branch-name	balance
Dammam	1300
Khobar	1500
Hafuf	700

--- Aggregate Functions: Renaming

- Result of aggregation does not have a name
- Can use rename operation to give it a name
- For convenience, we permit renaming as part of aggregate operation
branch-name $g_{\text {sum(balance) as sum-balance }}$ (account)

-- Null Values ...

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values
- Is an arbitrary decision. Could have returned null as result instead.
- We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
- Alternative: assume each null is different from each other
- Both are arbitrary decisions, so we simply follow SQL

... -- Null Values

- Comparisons with null values return the special truth value unknown
- If false was used instead of unknown, then $\operatorname{not}(A<5)$ would not be equivalent to $\quad A>=5$
- Three-valued logic using the truth value unknown:
- OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown
- AND: (true and unknown) = unknown, (false and unknown) = false,
(unknown and unknown) = unknown
- NOT: (not unknown) = unknown
- In SQL " P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

- Summary ...

(a) Selection

(d) Union

(b) Projection

(e) Intersection

(c) Cartesian product

(f) Set difference

... - Summary ...

T	
A	B
a	1
b	2

U	
B	C
1	x
1	y
3	z

$T_{\mathrm{xv}} U$		
A	B	C
a	1	x
a	1	y

$T x_{B} U$

A	B
a	1

$T \rtimes_{C} U$			
A	B	C	
a	1	x	
a	1	y	
b	2		

(g) Natural join
(h) Semi-join
(i) Left outer-join

(j) Division (shaded area)

Example of division

... - Summary

- Select
- Project
- Rename
- Union
- Difference
- Intersection
- Division
- Assignment
- Cartesian Product X
- Join
- Natural Join *
- Left Outer Join
- Right Outer Join
- Full Outer Join
- Aggregate Function

- Example Queries ...

- The following Relations are used for the coming Examples.
- branch (branch-name, branch-city, assets)
- customer (customer-name, customer-street, customer-only)
- account (account-number, branch-name, balance)
- loan (loan-number, branch-name, amount)
- depositor (customer-name, account-number)
- borrower (customer-name, loan-number)

... - Example Queries ...

- Find all loans of over $\$ 1200$

$$
\sigma_{\text {amount }>1200}(\text { loan })
$$

- Find the loan number for each loan of an amount greater than $\$ 1200$

$$
\Pi_{\text {loan-number }}\left(\sigma_{\text {amount }}>1200\right. \text { (loan)) }
$$

... - Example Queries ...

- Find the names of all customers who have a loan, an account, or both, from the bank

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cup \Pi_{\text {customer-name }} \text { (depositor) }
$$

- Find the names of all customers who have a loan and an account at bank

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cap \Pi_{\text {customer-name }} \text { (depositor) }
$$

... - Example Queries ...

- Find the names of all customers who have a loan at the KFUPM branch.

```
\Pi customer-name ( }\mp@subsup{\sigma}{\mathrm{ branch-name= "KFUPM"}}{
(borrower * loan))
```

- Find the of all customers who have a loan at the KFUPM branch but do not have an account at any branch of the bank

```
\Pi customer-name ( }\mp@subsup{\sigma}{\mathrm{ branch-name }}{}=\mathrm{ "KFUPM"
    (borrower * loan)) -
    \Picustomer-name(depositor)
```


... - Example Queries ...

- Find the names of all customers who have a loan at the KFUPM branch.
- Query 1
$\prod_{\text {Customer-name }}\left(\sigma_{\text {branch-name }}=\right.$ "KFUPM" $($ borrower $*$ loan $\left.)\right)$

... - Example Queries ...

- Find the largest account balance. Rename account relation as d
$\Pi_{\text {balance }}$ (account) $-\Pi_{\text {account.balance }}$
($\sigma_{\text {account.balance }}$ d.balance $\left(\right.$ account ${ }^{*} \rho_{d}($ account $\left.)\right)$)

... - Example Queries ...

- Find all customers who have an account from at least the "Dammam" and the "Khobar" branches.

Query 1

$$
\begin{aligned}
& \text { ПcN(} \left.\left.\sigma B N=" D^{D m m a m "(d e p o s i t o r ~} * \text { account }\right)\right) \cap \\
& \text { ПCN }(\sigma B N=" K h o b a r "(\text { depositor * account }))
\end{aligned}
$$

where CN denotes customer-name and BNdenotes branch-name.

Query 2

Пcustomer-name, branch-name (depositor * account)
\div Otemp(branch-name) (\{("Dammam"), ("Khobar")\})

... - Example Queries

- Find all customers who have an account at all branches located in Dammam city.

```
\customer-name, branch-name (depositor * account)
\(\div\) Пbranch-name \((\sigma\) branch-city \(=\) "Dammam" \((\) branch \())\)
```

