# **Relational Algebra**



- Introduction to Relational Algebra +
- Relational Algebra Operations +
- Summary +
- Example Queries +

- Relational algebra is a set of operations that enable the user to specify basic retrieval requests. Each operation produces results which is a relation.
- Relational algebra expression is a sequence of relational algebra operations whose result will also be a relation.
- There are two groups of relational algebra operations:
  - Operations developed specifically for relational database, such as SELECT, PROJECT, and JOIN.
  - Operations from mathematical set theory, such as UNION, SET DIFFERENCE, INTERSECTION, CARTESIAN PRODUCT, and DIVISION

## ... - Introduction To Relational Algebra

- Set theoretic operations are used to merge the tuples of two relations. These are binary operations.
- Some set theoretic operations require both relations must be union compatible.
- Union compatible relations should have the same degree and each pair of corresponding attribute should have the same domain. These include:
  - UNION
  - SET DIFFERENCE
  - INTERSECTION
- CARTESIAN PRODUCT is another set theoretic operation which doesn't require union compatibility.

## - Relational Algebra Operations

- Select +
- Project +
- Rename +
- Union +
- Difference +
- Intersection +
- Division +
- Assignment +
- Cartesian Product +
- Join +
- Outer Union +
- Composition of Operators +
- Aggregate Functions +
- Null Values +

## -- Select Operation

- SELECT operation is used to select a subset of the tuples from the relation that satisfies the select condition.
- It is denoted by:  $\sigma_{\rho}(r)$
- *p* is called the selection predicate (SELECT condition)
- Defined as:

 $\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$ 

Where p is a formula in propositional calculus consisting of terms connected by :  $\land$  (and),  $\lor$  (or),  $\neg$  (not) Each term is one of:

<attribute> op <attribute> or <constant>

where *op* is one of:  $=, \neq, >, \geq, <, \leq$ 

• Example of selection:  $\sigma_{name="Adil"}(EMPLOYEE)$ 

# --- Select Operation – Example



#### ---- Characteristics of SELECT Operation

- The select condition is applied independently to each tuple t in r. If the condition is true, then tuple t is selected and will appear in the resulting relation.
- The SELECT operation is unary, it is applied to a single relation.
- The degree of resulting relation is the same as *r*.
- The cardinality of resulting relation is less than or equal to *r*.
- The SELECT operation is cumulative. A sequence of SELECT operations can be applied in any order.
  - $\sigma < \text{cond1} > (\sigma < \text{cond2} > (r)) = \sigma < \text{cond2} > (\sigma < \text{cond1} > (r))$
- A cascade of SELECT operations can be combined into a single SELECT operation with a conjunctive (^) condition.

•  $\sigma < \text{cond1} > (...(\sigma < \text{condn} > (t)) = \sigma < \text{cond1} > ^ < \text{cond2} > ... < \text{condn} > (t)$ 



- Is used to select some attributes from a relation.
- Is denoted by:

 $\prod$  <attribute list>(*r*)

where <attribute list> are attribute names and *r* is a relation algebra expression

- The result is defined as the relation of <attribute list> columns obtained by erasing the columns that are not listed
- Example: To eliminate the *name* attribute of *DEPARTMENT*

#### $\Pi_{number}$ (DEPARTMENT)

#### --- Project Operation – Example



**Duplicates Removed** 

#### ---- Characteristics of PROJECT Operation

- The result of a PROJECT operation will be a relation consisting of the attributes specified in the <attribute list> in the same order.
- The degree is equal to the number of attributes in the list.
- The projection operations removes any duplicates.
- The cardinality of the resulting relation is always less than or equal to the cardinality of r.
- For a cascade of PROJECT operations, only the outermost need to be considered for evaluation. If <list1> ⊆ <list2> ⊆ ... ⊆ <listn> ⊆ r, then
  - $\prod < \text{list1} > (\prod < \text{list2} > (... (\prod < \text{listn} > (r))) = \prod < \text{list1} > (r)$

## -- Rename Operation

- The rename operation (\(\rho\)) allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.
   Example:

$$\rho_s(r)$$

returns the expression r under the name s

• If a relational-algebra expression *r* has arity *n*, then

$$\rho_{s(A1, A2, ..., An)}(r)$$

returns the result of expression *r* under the name *s*, and with the attributes renamed to *A1*, *A2*, ...., *An*.

#### - Rename Operations: Example





- Is denoted by:  $r \cup s$
- Is defined as:

 $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$ 

- The result of r 
   s will include all tuples which are either in r or in s or in both.
- For  $r \cup s$  to be valid r and s must be union compatible
- Union operation is:
  - Commutative:  $r \cup s = s \cup r$
  - Associative:  $r \cup (s \cup w) = (r \cup s) \cup w$
- E.g. to find all the names of faculty and students in the FACULTY and STUDENT tables:  $\prod_{name} (FACULTY) \cup \prod_{name} (STUDENT)$







- Is denoted by: r s
- IS defined as:  $r s = \{t \mid t \in r \text{ and } t \notin s\}$
- The result of r s will include all the tuples that are in r but not in s.
- *r* and *s* must be union compatible
- this operation operation is neither Commutative nor Associative.





#### -- Set-Intersection Operation

- Is denoted by:  $r \cap s$
- Is defined as:  $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- The result of r ∩ s will include all the tuples that are in both r and s.
- r and s must be union compatible.
- Intersection is:
  - Commutative:  $r \cap s = s \cap r$
  - Associative:  $r \cap (s \cap w) = (r \cap s) \cap w$
- Note:  $r \cap s = r (r s)$





#### -- Division Operation ...

- Is denoted by: *r* ÷ *s*
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

• 
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$
  
•  $S = (B_1, ..., B_n)$ 

The result of  $r \div s$  is a relation on schema  $R - S = (A_1, ..., A_m)$ 

$$r \div s = \{ t \mid t \in \prod_{R-S}(r) \land \forall u \in s(tu \in r) \}$$

#### --- Division Operation – Example1







#### ... -- Division Operation

- Property
  - Let  $q = r \div s$
  - Then q is the largest relation satisfying  $q \ge s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let  $S \subseteq R$

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$$

To see why

- $\prod_{R-S,S}(r)$  simply reorders attributes of *r*
- $\prod_{R-S}(\prod_{R-S}(r) \times s) \prod_{R-S,S}(r))$  gives those tuples t in

 $\prod_{R-S}(r)$  such that for some tuple  $u \in s$ ,  $tu \notin r$ .

### -- Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
  - Write query as a sequential program consisting of
    - a series of assignments
    - followed by an expression whose value is displayed as a result of the query.
  - Assignment must always be made to a temporary relation variable.
- Example: Write *r* ÷ *s* as

 $temp1 \leftarrow \prod_{R-S} (r)$  $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$ result = temp1 - temp2

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.

#### --- Assignment Operation – Example



-- Cartesian-Product Operation

- Is denoted by: *r* x *s*
- Is defined as:

 $r \times s = \{t q \mid t \in r \text{ and } q \in s\}$ 

- The result of r x s will combine tuples from both r and s in a combinatorial fashion.
- Assume that attributes of r(A) and s(B) are disjoint. (That is,  $A \cap B = \emptyset$ ).
- If attributes of r(A) and s(B) are not disjoint, then renaming must be used.





- Degree r X s = degree(r) + degree(s)
- Cardinality of r X s = cardinality(r) \* cardinality(s)
- Generally the result of CARTESIAN PRODUCT is meaningless unless is followed by SELECT, and is called JOIN.



- Join Operation combine related tuples from two relations into a single tuple based on join condition.
- Its is denoted by: r ≥< < join condition>S

- Degree of the  $r \ge s = \text{degree}(r) + \text{degree}(s)$ .
- Cardinality of  $r \ge s$  is between 0 and cardinality (r) \* cardinality(s).
- The order of attributes in  $r \ge s$  is { A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>, B<sub>1</sub>, B<sub>2</sub>, ..., B<sub>m</sub>} where A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> attributes of *r* and B<sub>1</sub>, B<sub>2</sub>, ..., B<sub>m</sub> are attributes of *s*.
- The resulting relation has one tuple for each combination of tuples – one from r and one for s – whenever the combination satisfies the join condition.

#### --- Types of Join Operation

- Theta join +
- Equijoin +
- Natural join +
- Outer Join +
  - Left Outer Join +
  - Right Outer Join +
  - Full Outer Join +

The following two tables will be used in coming examples.

|      | loan-number | branch-name | amount |
|------|-------------|-------------|--------|
| loan | L-170       | Khobar      | 3000   |
| ioan | L-230       | Riyadh      | 4000   |
|      | L-260       | Dammam      | 1700   |

|          | customer-name | loan-number |
|----------|---------------|-------------|
| horrower | Adel          | L-170       |
|          | Sami          | L-230       |
|          | Hashem        | L-155       |



• Its is denoted by:  $r \ge \langle r.A \theta \ s.B \rangle S$ Where  $\theta = \{=, \neq, <, >, \leq, \geq\}$ 

*loan*  $\ge$  *loan-number* = *loan-number Borrower* 

| Loan-number | Branch-name | amount | Customer-name | Loan-number |
|-------------|-------------|--------|---------------|-------------|
| L-170       | Khobar      | 3000   | Adel          | L-170       |
| L-230       | Riyadh      | 4000   | Sami          | L-230       |



 The most common join involves join conditions with equality comparisons, where θ is =. This special type of Theta join is called Equijoin.



- The most common join involves join conditions with equality comparisons, where θ is {=}. This special type of Theta join is called Equijoin.
- Its is denoted by:  $r \ge \langle r.A = s.B \rangle$  s

| loan |          | loan-number = loan-number | Borrower |
|------|----------|---------------------------|----------|
|      | $\times$ | Ļ                         |          |

| Loan-number | Branch-name | amount | Customer-name | Loan-number |
|-------------|-------------|--------|---------------|-------------|
| L-170       | Khobar      | 3000   | Adel          | L-170       |
| L-230       | Riyadh      | 4000   | Sami          | L-230       |
| -           |             | •      |               |             |

• The problem with Equijoin is Pairs of attributes with identical values in evey tuple.

#### --- Natural-Join Operation

- Is denoted by: r \* s
- Let *r* and *s* be relations on schemas *R* and *S* respectively. Then, *r* \* *s* is a relation on schema *R* ∪ *S* obtained as follows:
  - Consider each pair of tuples  $t_r$  from r and  $t_s$  from s.
  - If t<sub>r</sub> and t<sub>s</sub> have the same value on each of the attributes in R ∩ S, add a tuple t to the result, where
    - *t* has the same value as  $t_r$  on *r*
    - *t* has the same value as  $t_s$  on *s*
- Example:
  - R = (A, B, C, D)S = (E, B, D)
  - Result schema = (A, B, C, D, E)
  - r \* s is defined as:  $\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B} \land r.D = s.D (r \times s))$







#### loan \* Borrower

| loan-number | branch-name | amount | customer-name |
|-------------|-------------|--------|---------------|
| L-170       | Khobar      | 3000   | Adel          |
| L-230       | Riyadh      | 4000   | Sami          |

• Unlike Equijoin, no pairs of attributes with identical values in evey tuple.



- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* values:
  - *null* signifies that the value is unknown or does not exist
  - All comparisons involving *null* are (roughly speaking) false by definition.
    - Will study precise meaning of comparisons with nulls later









|             | 1           |        | 1             |
|-------------|-------------|--------|---------------|
| loan-number | branch-name | amount | customer-name |
|             | -           | -      |               |
| L-170       | Khobar      | 3000   | Adel          |
| L-230       | Riyadh      | 4000   | Sami          |
| L-155       | null        | null   | Hashim        |



 $loan \implies borrower$ 

| loan-number | branch-name | amount | customer-name |
|-------------|-------------|--------|---------------|
| L-170       | Khobar      | 3000   | Adel          |
| L-230       | Riyadh      | 4000   | Sami          |
| L-260       | Dammam      | 1700   | null          |
| L-155       | null        | null   | Hashim        |

## -- OUTER UNION Operation

- Outer Union operation compute the union of two relations if the relations are partially union compatible.
- Characteristics:
  - The list of compatible attributes includes a key for both relations.
  - Tuples from the component relations with the same key are presented only once in the result and have values for all attributes in the result.
  - The attributes that are not union compatible from either relation are kept in the result.
  - Tuples that have no values for these attributes are padded with null values.
  - OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the common attributes of the two relations.

| OUTER UNION Operation: Example |     |      |         |                     |        |     |      |      |
|--------------------------------|-----|------|---------|---------------------|--------|-----|------|------|
| Non-compatible Attributes      |     |      |         |                     | -      |     |      |      |
| Name                           | SSN | Dept | Advisor |                     | Name   | SSN | Dept | Rank |
| Ali                            | 111 | COE  | Sami    |                     | Sami   | 444 | COE  | FP   |
| Adel                           | 222 | EE   | Khaled  | U                   | Khaled | 555 | EE   | AP   |
| Fahd                           | 333 | COE  | Sami    | Sami Adel 222 EE TA |        |     |      | ТА   |
|                                |     |      |         |                     |        |     |      |      |

| Name   | SSN | Dept | Advisor | Rank |
|--------|-----|------|---------|------|
| Ali    | 111 | COE  | Sami    | null |
| Adel   | 222 | EE   | Khaled  | ТА   |
| Fahd   | 333 | COE  | Sami    | null |
| Sami   | 444 | COE  | null    | FP   |
| Khaled | 555 | EE   | null    | AP   |



## -- Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single value as a result.

- avg: average value
- min: minimum value
- max: maximum value
- sum: sum of values
- count: number of values
- Aggregate operation in relational algebra

G1, G2, ..., Gn  ${\mathcal G}_{F1(A1), F2(A2),..., Fn(An)}$  (E)

- *E* is any relational-algebra expression
- G<sub>1</sub>, G<sub>2</sub> ..., G<sub>n</sub> is a list of attributes on which to group (can be empty)
- Each *F<sub>i</sub>* is an aggregate function
- Each *A<sub>i</sub>* is an attribute name

#### --- Aggregate Operation – Example 1



r

$$g_{sum(c)}(r) \longrightarrow$$
 sum-C 27

#### --- Aggregate Operation – Example 2

#### • Relation *account* grouped by *branch-name*:

| branch-name | account-number | balance |
|-------------|----------------|---------|
| Dammam      | A-102          | 400     |
| Dammam      | A-201          | 900     |
| Khobar      | A-217          | 750     |
| Khobar      | A-215          | 750     |
| Hafuf       | A-222          | 700     |

#### branch-name **G**<sub>sum(balance)</sub> (account)

| branch-name | balance |
|-------------|---------|
| Dammam      | 1300    |
| Khobar      | 1500    |
| Hafuf       | 700     |

#### --- Aggregate Functions: Renaming

#### Result of aggregation does not have a name

- Can use rename operation to give it a name
- For convenience, we permit renaming as part of aggregate operation

branch-name *g* sum(balance) as sum-balance (account)



- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- *null* signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving *null* is *null*.
- Aggregate functions simply ignore null values
  - Is an arbitrary decision. Could have returned null as result instead.
  - We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
  - Alternative: assume each null is different from each other
  - Both are arbitrary decisions, so we simply follow SQL

## ... -- Null Values

- Comparisons with null values return the special truth value unknown
  - If *false* was used instead of *unknown*, then *not* (A < 5) would not be equivalent to A >= 5
- Three-valued logic using the truth value *unknown*:
  - OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown
  - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
  - NOT: (not unknown) = unknown
  - In SQL "*P* is unknown" evaluates to true if predicate *P* evaluates to unknown
- Result of select predicate is treated as *false* if it evaluates to *unknown*





#### - Summary ...

. . .



#### DB:Relational Algebra

#### - Summary

- Select σ
- Project ∏
- Rename
   ρ
- Union ∪
- Difference –
- Intersection  $\cap$
- Division ÷
- Assignment  $\leftarrow$
- Cartesian Product X

| Join                 | $\geq$ |
|----------------------|--------|
| Natural Join         | k      |
| Left Outer Join      | _      |
| <br>Right Outer Join | X      |
| Full Outer Join      |        |
| Aggregate Function   | G      |
|                      |        |

 $\overset{\times}{\xrightarrow{}}$ 



- The following Relations are used for the coming Examples.
  - branch (branch-name, branch-city, assets)
  - customer (customer-name, customer-street, customer-only)
  - account (account-number, branch-name, balance)
  - loan (loan-number, branch-name, amount)
  - depositor (customer-name, account-number)
  - borrower (customer-name, loan-number)



Find all loans of over \$1200

 $\sigma_{amount > 1200}$  (loan)

• Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan-number} (\sigma_{amount > 1200} (loan))$$



 Find the names of all customers who have a loan, an account, or both, from the bank

 $\Pi_{customer-name}$  (borrower)  $\cup \Pi_{customer-name}$  (depositor)

 Find the names of all customers who have a loan and an account at bank

 $\Pi_{customer-name}$  (borrower)  $\cap \Pi_{customer-name}$  (depositor)



Find the names of all customers who have a loan at the KFUPM branch.

```
Π<sub>customer-name</sub> (σ<sub>branch-name="KFUPM"</sub>
(borrower * loan))
```

 Find the of all customers who have a loan at the KFUPM branch but do not have an account at any branch of the bank

```
Π<sub>customer-name</sub> (σ<sub>branch-name =</sub> "KFUPM"
(borrower * loan)) -
Π<sub>customer-name</sub>(depositor)
```



- Find the names of all customers who have a loan at the KFUPM branch.
  - Query 1  $\Pi_{customer-name}(\sigma_{branch-name} = "KFUPM" (borrower * loan))$



Find the largest account balance. Rename *account* relation as *d* 

 $\Pi_{balance}(account) - \Pi_{account.balance}$   $(\sigma_{account.balance < d.balance}(account * \rho_d(account)))$ 



 Find all customers who have an account from at least the "Dammam" and the "Khobar" branches.

Query 1

 $\prod CN(\sigma_{BN}="Dammam"(depositor * account)) \cap$  $\prod CN(\sigma_{BN}="Khobar"(depositor * account))$ 

where *CN* denotes customer-name and *BN* denotes *branch-name*.

#### Query 2

 $\prod$  customer-name, branch-name (depositor \* account)

+ ρtemp(branch-name) ({("Dammam"), ("Khobar")})



 Find all customers who have an account at all branches located in Dammam city.

> $\prod customer-name, branch-name (depositor * account)$  $\div \prod branch-name (\sigma branch-city = ``Dammam'' (branch))$