
March 23, 2008 ICS102: Classes 4/5 1

Classes 4/5

March 23, 2008 ICS102: Classes 4/5 2

Outline

Using and Misusing References

Designing A Person Class

Copy Constructors

Mutable and Immutable Classes

Deep Copy Versus Shallow Copy

March 23, 2008 ICS102: Classes 4/5 3

- Using and Misusing References

When writing a program, it is very important to insure that
private instance variables remain truly private

For a primitive type instance variable, just adding the
private modifier to its declaration should insure that there
will be no privacy leaks

For a class type instance variable, however, adding the
private modifier alone is not sufficient

March 23, 2008 ICS102: Classes 4/5 4

-- Designing A Person Class: Instance Variables

A simple Person class could contain instance variables
representing a person's name, the date on which they were
born, and the date on which they died

These instance variables would all be class types: name of
type String, and two dates of type Date

As a first line of defense for privacy, each of the instance
variables would be declared private

public class Person
{
private String name;
private Date born;
private Date died; //null is still alive

. . .

March 23, 2008 ICS102: Classes 4/5 5

… -- Designing a Person Class: Constructor ...

In order to exist, a person must have (at least) a name and a
birth date

Therefore, it would make no sense to have a no-argument
Person class constructor

A person who is still alive does not yet have a date of death

Therefore, the Person class constructor will need to be able
to deal with a null value for date of death

A person who has died must have had a birth date that
preceded his or her date of death

Therefore, when both dates are provided, they will need to
be checked for consistency

March 23, 2008 ICS102: Classes 4/5 6

… -- Designing a Person Class: Constructor

public Person(String initialName, Date birthDate, Date deathDate)
{
if (consistent(birthDate, deathDate))
{ name = initialName;
born = new Date(birthDate);
if (deathDate == null)
died = null;

else
died = new Date(deathDate);

}
else
{ System.out.println("Inconsistent dates.");
System.exit(0);

}
}

March 23, 2008 ICS102: Classes 4/5 7

-- Designing a Person Class: the Class Invariant

A statement that is always true for every object of the class
is called a class invariant

A class invariant can help to define a class in a consistent and
organized way

For the Person class, the following should always be true:
An object of the class Person has a date of birth (which is not
null), and if the object has a date of death, then the date of
death is equal to or later than the date of birth

Checking the Person class confirms that this is true of
every object created by a constructor, and all the other
methods (e.g., the private method consistent) preserve
the truth of this statement

March 23, 2008 ICS102: Classes 4/5 8

-- Designing a Person Class: the Class Invariant

/** Class invariant: A Person always has a date of birth,
and if the Person has a date of death, then the date of
death is equal to or later than the date of birth.
To be consistent, birthDate must not be null. If there
is no date of death (deathDate == null), that is
consistent with any birthDate. Otherwise, the birthDate
must come before or be equal to the deathDate.

*/
private static boolean consistent(Date birthDate, Date deathDate)
{

if (birthDate == null) return false;
else if (deathDate == null) return true;
else return (birthDate.precedes(deathDate ||

birthDate.equals(deathDate));
}

March 23, 2008 ICS102: Classes 4/5 9

-- Designing a Person Class: the equals and datesMatch Methods

The definition of equals for the class Person includes an
invocation of equals for the class String, and an
invocation of the method equals for the class Date

Java determines which equals method is being invoked
from the type of its calling object

Also note that the died instance variables are compared
using the datesMatch method instead of the equals
method, since their values may be null

March 23, 2008 ICS102: Classes 4/5 10

--- Designing a Person Class: the equals Method

public boolean equals(Person otherPerson)
{
if (otherPerson == null)
return false;

else
return (name.equals(otherPerson.name) &&

born.equals(otherPerson.born) &&
datesMatch(died, otherPerson.died));

}

March 23, 2008 ICS102: Classes 4/5 11

--- Designing a Person Class: the matchDate Method

/** To match date1 and date2 must either be the
same date or both be null.

*/
private static boolean datesMatch(Date date1, Date date2)
{
if (date1 == null)
return (date2 == null);

else if (date2 == null) //&& date1 != null
return false;

else // both dates are not null.
return(date1.equals(date2));

}

March 23, 2008 ICS102: Classes 4/5 12

-- Designing a Person Class: the toString Method

Like the equals method, note that the Person class
toString method includes invocations of the Date class
toString method

public String toString()
{
String diedString;
if (died == null)
diedString = ""; //Empty string

else
diedString = died.toString();

return (name + ", " + born + "-" + diedString);
}

March 23, 2008 ICS102: Classes 4/5 13

- Copy Constructors

A copy constructor is a constructor with a single argument of
the same type as the class

The copy constructor should create an object that is a
separate, independent object, but with the instance variables
set so that it is an exact copy of the argument object

Note how, in the Date copy constructor, the values of all of
the primitive type private instance variables are merely
copied

March 23, 2008 ICS102: Classes 4/5 14

-- Copy Constructor for a Class with Primitive Type Instance Variables …

public Date(Date aDate)
{
if (aDate == null) //Not a real date.
{
System.out.println("Fatal Error.");
System.exit(0);

}

month = aDate.month;
day = aDate.day;
year = aDate.year;

}

March 23, 2008 ICS102: Classes 4/5 15

… -- Copy Constructor for a Class with Class Type Instance Variables …

Unlike the Date class, the Person class contains three class type
instance variables

If the born and died class type instance variables for the new
Person object were merely copied, then they would simply
rename the born and died variables from the original Person
object

born = original.born //dangerous
died = original.died //dangerous

This would not create an independent copy of the original
object

March 23, 2008 ICS102: Classes 4/5 16

… -- Copy Constructor for a Class with Class Type Instance Variables …

The actual copy constructor for the Person class is a "safe"
version that creates completely new and independent copies of
born and died, and therefore, a completely new and independent
copy of the original Person object

For example:

born = new Date(original.born);

Note that in order to define a correct copy constructor for a class
that has class type instance variables, copy constructors must
already be defined for the instance variables' classes

March 23, 2008 ICS102: Classes 4/5 17

… -- Copy Constructor for a Class with Class Type Instance Variables

public Person(Person original)
{
if (original == null)
{
System.out.println("Fatal error.");
System.exit(0);

}
name = original.name;
born = new Date(original.born);
if (original.died == null)
died = null;

else
died = new Date(original.died);

}

March 23, 2008 ICS102: Classes 4/5 18

Pitfall: Privacy Leaks

The previously illustrated examples from the Person class show
how an incorrect definition of a constructor can result in a privacy
leak

A similar problem can occur with incorrectly defined mutator or
accessor methods

For example:

public Date getBirthDate()
{

return born; //dangerous
}

Instead of:
public Date getBirthDate()
{

return new Date(born); //correct
}

March 23, 2008 ICS102: Classes 4/5 19

- Mutable and Immutable Classes …

The accessor method getName from the Person class appears to
contradict the rules for avoiding privacy leaks:

public String getName()
{
return name; //Isn't this dangerous?

}

Although it appears the same as some of the previous examples, it
is not: The class String contains no mutator methods that can
change any of the data in a String object

March 23, 2008 ICS102: Classes 4/5 20

… - Mutable and Immutable Classes …

A class that contains no methods (other than constructors)
that change any of the data in an object of the class is called
an immutable class

Objects of such a class are called immutable objects

It is perfectly safe to return a reference to an immutable object
because the object cannot be changed in any way

The String class is an immutable class

March 23, 2008 ICS102: Classes 4/5 21

… - Mutable and Immutable Classes

A class that contains public mutator methods or other public
methods that can change the data in its objects is called a
mutable class, and its objects are called mutable objects

Never write a method that returns a mutable object

Instead, use a copy constructor to return a reference to a
completely independent copy of the mutable object

March 23, 2008 ICS102: Classes 4/5 22

- Deep Copy Versus Shallow Copy

A deep copy of an object is a copy that, with one exception,
has no references in common with the original

Exception: References to immutable objects are allowed to be
shared

Any copy that is not a deep copy is called a shallow copy

This type of copy can cause dangerous privacy leaks in a
program

March 23, 2008 ICS102: Classes 4/5 23

THE END

