!'_ Classes 3/5

March 23, 2008 ICS102: Classes 3/5

Outline

= Variables and Memory

= References

= Class Type Variables Store a Reference

= Assignment Operator with Class Type Variables

= Class Parameters

= Parameters of a Class Type

= Differences Between Primitive and Class-Type Parameters

= Comparing Parameters of a Class Type and a Primitive Type

= Example: A Toy Class
= The Constant null
= The new Operator and Anonymous Objects

March 23, 2008 ICS102: Classes 3/5

- Variables and Memory ...

= A computer has two forms of memory

s Secondary memory is used to hold files for "permanent"
storage

= Main memory is used by a computer when it is running
a program

= Values stored in a program's variables are kept in main
memory

March 23, 2008 ICS102: Classes 3/5

... - Variables and Memory ...

= Main memory consists of a long list of numbered locations
called bytes

= Each byte contains eight b/ts: eight O or 1 digits

= The number that identifies a byte is called its aaddress
= A data item can be stored in one (or more) of these bytes

= The address of the byte is used to find the data item
when needed

March 23, 2008 ICS102: Classes 3/5

. - Variables and Memory ...

= Values of most data types require more than one byte of
storage

= Several adjacent bytes are then used to hold the data item

= The entire chunk of memory that holds the data is called its
memory location

= The address of the first byte of this memory location is used as
the address for the data item

= A computer's main memory can be thought of as a long list
of memory locations of varying sizes

March 23, 2008 ICS102: Classes 3/5

. - Variables in Memory

Display 5.10 Variables in Memory
Main Memory

byte 0 AN
byte 1 OO > variablel (3-byte location with address O)
byte 2 OO
iﬁz j >~ variable2 (Z2-byte location with address 3)
byte 5 \\\\\\\\\\\\\\> variable3 (1-byte location with address 5)
byte ©
byte 7 > variabled (3-byte location with address ©)
byte &

March 23, 2008

NV

ICS102: Classes 3/5

- References ...

= Every variable is implemented as a location in computer
memory

= When the variable is a primitive type, the value of the
variable is stored in the memory location assigned to the

variable

= Each primitive type always require the same amount of
memory to store its values

March 23, 2008 ICS102: Classes 3/5

... - References ...

= When the variable is a class type, only the memory address
(or reference) where its object is located is stored in the
memory location assigned to the variable

= The object named by the variable is stored in some other
location in memory

= Like primitives, the value of a class variable is a fixed size

= Unlike primitives, the value of a class variable is a memory
address or reference

= The object, whose address is stored in the variable, can be of
any size

March 23, 2008 ICS102: Classes 3/5

... - References

= Two reference variables can contain the same reference,
and therefore name the same object

= The assignment operator sets the reference (memory address)
of one class type variable equal to that of another

= Any change to the object named by one of theses variables will
produce a change to the object named by the other variable,
since they are the same object

variable2 = variablel:

March 23, 2008 ICS102: Classes 3/5

- Class Type Variables Store a Reference ...

Display 5.1z Class Type Variables Store a Reference

public class ToyClass

{ ToyClass sampleVariable;

Creates the variable sampleVariable in

private String name;]]
memory but assighns it no value.

private int number;
The complete definition of the class

ToyClass is given in Display 5.11. \/\/\/

sampleVariable ?

sampleVariable =
new ToyClass("Josephine Student", 42); /\/\/\/

Creates an object, places the object someplace in memory, and then
places the address of the object in the variable sampleVariable. We
do not know what the address of the object is, but let’s assume it is
2056. The exact humber does not matter.

(continued)

March 23, 2008 ICS102: Classes 3/5

... - Class Type Variables Store a Reference

Display 5.12 Class Type Variables Store a Reference

N

sampleVariable 2056

For emphasis, we made the
arrow point to the memory
location referenced.

P VVANY/
N

2056 Josephine Student
42

P VAANY

March 23, 2008 ICS102: Classes 3/5

- Assignment Operator with Class Type Variables ...

Display 5.13 Assignment Operator with Class Type Variables

ToyClass variablel = new ToyClass('"Joe", 42);

ToyClass variable2;
We do not know what memory address

variablel 4068 (reference) is stored in the variable
variablel. Let’s say it is 4068. The
exact number does not matter.
variable?2 ?

Note that you can think of

Someplace else in memory:
new ToyClass("Joe", 42)

as returning a reference.

4068 Joe
42

(continued)

March 23, 2008 ICS102: Classes 3/5 12

... - Assignment Operator with Class Type Variables ...

Display 5.13 Assignment Operator with Class Type Variables

variable2 = variablel;
variablel 4068
variable?2 4068

Someplace else in memory:

4068 Joe
42

(continued)

March 23, 2008 ICS102: Classes 3/5

... - Assignment Operator with Class Type Variables

Display 5.13 Assignment Operator with Class Type Variables

variable2.set("Josephine™, 1);

variablel 4068

variable2 4068

Someplace else in memory:

4068 Josephine
1

March 23, 2008 ICS102: Classes 3/5

- Class Parameters ...

= All parameters in Java are call-by-value parameters

= A parameter is a /ocal variable that is set equal to the
value of its argument

= Therefore, any change to the value of the parameter
cannot change the value of its argument

= Class type parameters appear to behave differently from
primitive type parameters

= They appear to behave in a way similar to parameters in

languages that have the call-by-reference parameter
passing mechanism

March 23, 2008 ICS102: Classes 3/5

15

... - Class Parameters

= The value plugged into a class type parameter is a
reference (memory address)

= Therefore, the parameter becomes another name for the
argument

= Any change made to the object named by the parameter
(i.e., changes made to the values of its instance variables)
will be made to the object named by the argument, because
they are the same object

= Note that, because it still is a call-by-value parameter, any
change made to the class type parameter itself (i.e., its
address) will not change its argument (the reference or
memory address)

March 23, 2008 ICS102: Classes 3/5 16

- Parameters of a Class Type

Display 5.1, Parameters of a Class Type

1 public class ClassParameterDemo ToyClass is defined in Display 5.11.
2 A

3 public static void main(String[] args)

4 {

5 ToyClass anObject = new ToyClass("Mr. Cellophane"”, 0);

6 System.out.println(anObject);

7 System.out.println(

8 "Now we call changer with anObject as argument.");

9 ToyClass.changer(anObject);
10 System.out.println(anObject); _
11 3 Notice that the method changer
12}

changed the instance variables in the
/ object anObject.

SAMPLE DIALOGUE

Mr. Cellophane 0

Now we call
Hot Shot 42

March 23, 2008

changer with anObject as argument.

ICS102: Classes 3/5

17

- Memory Picture for Display 5.14 ...

Display 5.15 Memory Picture for Display 5.14

Before anything:
We do not know what memory address

aParameter ? (reference) is stored in the variable
anObject. Let’s say it is 3075. The exact
number does not matter.
anObject 3078
Someplace else in memory:
3078 Mr. Cellophane

0

(continued)

March 23, 2008 ICS102: Classes 3/5

Display 5.15

Memory Picture for Display 5.14

... - Memory Picture for Display 5.14 ...

March 23, 2008

anObject is plugged in for aParamter.
anObject and aParameter become two names for the same object.

aParameter

anObject

3078

3078

3078

Someplace else in merory:

Mr .

(0]

Cellophane

ICS102: Classes 3/5

(continued)

19

... - Memory Picture for Display 5.14

Display 5.15 Memory Picture for Display 5.1z

ToyClass.changer(anObject) ; is executed

and so the following are executed:
aParameter.name = "Hot Shot'";
aParameter.number = 42;

As a result, anObject is changed.

aParameter 3078

anObject 3078

Someplace else in memory:

3078 Hot Shot
42

March 23, 2008 ICS102: Classes 3/5

20

- Differences Between Primitive and Class-Type Parameters

A method cannot change the value of a variable of a
primitive type that is an argument to the method

In contrast, a method can change the values of the instance

variables of a class type that is an argument to the method

March 23, 2008 ICS102: Classes 3/5

21

- Comparing Parameters of a Class Type and a Primitive Type ...

Display 5.16

Comparing Parameters of a Class Type and a Primitive Type

{

NNNHERRRRERBRRRR
NPRPOQOUWONOTUBEBWNROOONOOUVSA WNR
[

March 23, 2008

public class ParametersDemo

ToyClass?2 is defined in

public static void main(String[] args) Display 5.17.

{

ToyClass2 objectl = new ToyClass2(),
object2 = new ToyClass2();
objectl.set("Scorpius", 1);
object2.set("John Crichton™, 2);
System.out.println("Value of object2 before call to method:");
System.out.println(object2);
objectl.makeEqual (object2);
System.out.println("Value of object2 after call to method:");
System.out.println(object2);

int aNumber = 42;

System.out.println("Value of aNumber before call to method:
+ aNumber) ;

objectl.tryToMakeEqual CaNumber) ;

System.out.println("Value of aNumber after call to method:
+ aNumber) ;

(continued)

ICS102: Classes 3/5

22

... - Comparing Parameters of a Class Type and a Primitive Type

Display 5.16 Comparing Parameters of a Class Type and a Primitive Type

SAMPLE DIALOGUE An argument of a class type

can change.
Value of object2 before 0 ;
John Crichton 2

Value of object2 aftér call to method:
Scorpius 1
Value of aNumber before call to method: 42— /f1amument ot a primitive
Value of aNumber after call to method: 42 <— Wpecannot change

March 23, 2008 ICS102: Classes 3/5

- A Toy Class to Use in Display 5.16 ...

Display 5.17 A Toy Class to Use in Display 5.16

1 public class ToyClass2

2 A{

3 private String name;

4 private int number;

5 public void set(String newName, int newNumber)
6 {

/ name = newName;

8 number = newNumber;

9 }
10 public String toString()
11 {
12 return (name + " " + number);
13 }

(continued)

March 23, 2008 ICS102: Classes 3/5

... - A Toy Class to Use in Display 5.16

Display 5.17 A Toy Class to Use in Display 5.16

14 public void makeEqual(ToyClass2 anObject)

15 {

16 anObject.name = this.name;

17 anObject.number = this.number; Read the text for a discussion of
18 } the problem with this method.
19 public void tryToMakeEqual(int aNumber)/

20 {

21 aNumber = this.number;

22 }

23 public boolean equals(ToyClass2 otherObject)

24 {

25 return ((name.equals(otherObject.name))

26 && (number == otherObject.number));

27 }

<Other methods can be the same as in Display 5.11, although no
other methods are needed or used in the current discussion. >

28 }
29
March 23, 2008 ICS102: Classes 3/5

25

Pitfall: Use of = and == with Variables of a Class Type

= Used with variables of a class type, the assignment operator
(=) produces two variables that name the same object

= This is very different from how it behaves with primitive type
variables

= The test for equality (==) also behaves differently for class
type variables

= The == operator only checks that two class type variables have
the same memory address

= Unlike the equal s method, it does not check that their
Instance variables have the same values

= Two objects in two different locations whose instance variables

have exactly the same values would still test as being "not
equal”

March 23, 2008 ICS102: Classes 3/5

26

- The Constant nul |

= null is a special constant that may be assigned to a variable of
any class type

YourClass yourObject = null;
s It is used to indicate that the variable has no "real value“

= It is often used in constructors to initialize class type instance
variables when there is no obvious object to use

= null is not an object: Itis, rather, a kind of "placeholder" for a
reference that does not name any memory location

= Because it is like a memory address, use == or != (instead of
equals) to test if a class variable contains null

if (yourObject == null)

March 23, 2008 ICS102: Classes 3/5

27

Pitfall: Null Pointer Exception

= Even though a class variable can be initialized to nul I, this
does not mean that nul I is an object

= null is only a placeholder for an object

= A method cannot be invoked using a variable that is
Initialized to nul |

= The calling object that must invoke a method does not exist

= Any attempt to do this will result in a "Null Pointer
Exception™ error message

= For example, if the class variable has not been initialized at all
(and is not assigned to nul I), the results will be the same

March 23, 2008 ICS102: Classes 3/5

28

- The new Operator and Anonymous Objects

= The new operator invokes a constructor which initializes an

object, and returns a reference to the location in memory of
the object created

= This reference can be assigned to a variable of the object's
class type

= Sometimes the object created is used as an argument to a
method, and never used again

= In this case, the object need not be assigned to a variable, i.e.,
given a hame

= An object whose reference is not assigned to a variable is
called an anonymous object

March 23, 2008 ICS102: Classes 3/5 29

March 23, 2008

THE END

ICS102: Classes 3/5

30

