
March 23, 2008 ICS102: Classes 3/5 1

Classes 3/5

March 23, 2008 ICS102: Classes 3/5 2

Outline

Variables and Memory
References
Class Type Variables Store a Reference
Assignment Operator with Class Type Variables
Class Parameters
Parameters of a Class Type
Differences Between Primitive and Class-Type Parameters
Comparing Parameters of a Class Type and a Primitive Type
Example: A Toy Class
The Constant null
The new Operator and Anonymous Objects

March 23, 2008 ICS102: Classes 3/5 3

- Variables and Memory …

A computer has two forms of memory

Secondary memory is used to hold files for "permanent"
storage

Main memory is used by a computer when it is running
a program

Values stored in a program's variables are kept in main
memory

March 23, 2008 ICS102: Classes 3/5 4

… - Variables and Memory …

Main memory consists of a long list of numbered locations
called bytes

Each byte contains eight bits: eight 0 or 1 digits

The number that identifies a byte is called its address

A data item can be stored in one (or more) of these bytes

The address of the byte is used to find the data item
when needed

March 23, 2008 ICS102: Classes 3/5 5

… - Variables and Memory …

Values of most data types require more than one byte of
storage

Several adjacent bytes are then used to hold the data item

The entire chunk of memory that holds the data is called its
memory location

The address of the first byte of this memory location is used as
the address for the data item

A computer's main memory can be thought of as a long list
of memory locations of varying sizes

March 23, 2008 ICS102: Classes 3/5 6

… - Variables in Memory

March 23, 2008 ICS102: Classes 3/5 7

- References …

Every variable is implemented as a location in computer
memory

When the variable is a primitive type, the value of the
variable is stored in the memory location assigned to the
variable

Each primitive type always require the same amount of
memory to store its values

March 23, 2008 ICS102: Classes 3/5 8

… - References …

When the variable is a class type, only the memory address
(or reference) where its object is located is stored in the
memory location assigned to the variable

The object named by the variable is stored in some other
location in memory

Like primitives, the value of a class variable is a fixed size

Unlike primitives, the value of a class variable is a memory
address or reference

The object, whose address is stored in the variable, can be of
any size

March 23, 2008 ICS102: Classes 3/5 9

… - References

Two reference variables can contain the same reference,
and therefore name the same object

The assignment operator sets the reference (memory address)
of one class type variable equal to that of another

Any change to the object named by one of theses variables will
produce a change to the object named by the other variable,
since they are the same object

variable2 = variable1;

March 23, 2008 ICS102: Classes 3/5 10

- Class Type Variables Store a Reference …

March 23, 2008 ICS102: Classes 3/5 11

… - Class Type Variables Store a Reference

March 23, 2008 ICS102: Classes 3/5 12

- Assignment Operator with Class Type Variables …

March 23, 2008 ICS102: Classes 3/5 13

… - Assignment Operator with Class Type Variables …

March 23, 2008 ICS102: Classes 3/5 14

… - Assignment Operator with Class Type Variables

March 23, 2008 ICS102: Classes 3/5 15

- Class Parameters …

All parameters in Java are call-by-value parameters

A parameter is a local variable that is set equal to the
value of its argument

Therefore, any change to the value of the parameter
cannot change the value of its argument

Class type parameters appear to behave differently from
primitive type parameters

They appear to behave in a way similar to parameters in
languages that have the call-by-reference parameter
passing mechanism

March 23, 2008 ICS102: Classes 3/5 16

… - Class Parameters

The value plugged into a class type parameter is a
reference (memory address)

Therefore, the parameter becomes another name for the
argument

Any change made to the object named by the parameter
(i.e., changes made to the values of its instance variables)
will be made to the object named by the argument, because
they are the same object

Note that, because it still is a call-by-value parameter, any
change made to the class type parameter itself (i.e., its
address) will not change its argument (the reference or
memory address)

March 23, 2008 ICS102: Classes 3/5 17

- Parameters of a Class Type

March 23, 2008 ICS102: Classes 3/5 18

- Memory Picture for Display 5.14 …

March 23, 2008 ICS102: Classes 3/5 19

… - Memory Picture for Display 5.14 …

March 23, 2008 ICS102: Classes 3/5 20

… - Memory Picture for Display 5.14

March 23, 2008 ICS102: Classes 3/5 21

- Differences Between Primitive and Class-Type Parameters

A method cannot change the value of a variable of a
primitive type that is an argument to the method

In contrast, a method can change the values of the instance
variables of a class type that is an argument to the method

March 23, 2008 ICS102: Classes 3/5 22

- Comparing Parameters of a Class Type and a Primitive Type …

March 23, 2008 ICS102: Classes 3/5 23

… - Comparing Parameters of a Class Type and a Primitive Type

March 23, 2008 ICS102: Classes 3/5 24

- A Toy Class to Use in Display 5.16 …

March 23, 2008 ICS102: Classes 3/5 25

… - A Toy Class to Use in Display 5.16

March 23, 2008 ICS102: Classes 3/5 26

Pitfall: Use of = and == with Variables of a Class Type

Used with variables of a class type, the assignment operator
(=) produces two variables that name the same object

This is very different from how it behaves with primitive type
variables

The test for equality (==) also behaves differently for class
type variables

The == operator only checks that two class type variables have
the same memory address

Unlike the equals method, it does not check that their
instance variables have the same values

Two objects in two different locations whose instance variables
have exactly the same values would still test as being "not
equal"

March 23, 2008 ICS102: Classes 3/5 27

- The Constant null

null is a special constant that may be assigned to a variable of
any class type

YourClass yourObject = null;
It is used to indicate that the variable has no "real value“

It is often used in constructors to initialize class type instance
variables when there is no obvious object to use

null is not an object: It is, rather, a kind of "placeholder" for a
reference that does not name any memory location

Because it is like a memory address, use == or != (instead of
equals) to test if a class variable contains null

if (yourObject == null) . . .

March 23, 2008 ICS102: Classes 3/5 28

Pitfall: Null Pointer Exception

Even though a class variable can be initialized to null, this
does not mean that null is an object

null is only a placeholder for an object

A method cannot be invoked using a variable that is
initialized to null

The calling object that must invoke a method does not exist

Any attempt to do this will result in a "Null Pointer
Exception" error message

For example, if the class variable has not been initialized at all
(and is not assigned to null), the results will be the same

March 23, 2008 ICS102: Classes 3/5 29

- The new Operator and Anonymous Objects

The new operator invokes a constructor which initializes an
object, and returns a reference to the location in memory of
the object created

This reference can be assigned to a variable of the object's
class type

Sometimes the object created is used as an argument to a
method, and never used again

In this case, the object need not be assigned to a variable, i.e.,
given a name

An object whose reference is not assigned to a variable is
called an anonymous object

March 23, 2008 ICS102: Classes 3/5 30

THE END

