!'_ Classes 2/5

March 23, 2008 ICS102: Classes 2

Outline

= Overloading
s Constructors

s Default Variable Initializations

= The methods equals and toString

= Example

March 23, 2008 ICS102: Classes 2

Overloading

March 23, 2008

Overfoading is when two or more methods /7 the same
class have the same method name

To be valid, any two definitions of the method name
must have different signatures

= A signature consists of the name of a method together
with its parameter list

» Differing signatures must have different numbers
and/or types of parameters

ICS102: Classes 2

-- Overloading and Automatic Type Conversion

= If Java cannot find a method signature that exactly matches
a method invocation, it will try to use automatic type
conversion

= The interaction of overloading and automatic type
conversion can have unintended results

= In some cases of overloading, because of automatic type
conversion, a single method invocation can be resolved in

multiple ways

= Ambiguous method invocations will produce an error in
Java

March 23, 2008 ICS102: Classes 2

Pitfall: You Can Not Overload Based on the Type Returned

= The signature of a method only includes the method
name and Iits parameter types

= The signature does not include the type returned

= Java does not permit methods with the same name and
different return types in the same class

March 23, 2008 ICS102: Classes 2

-- You Can Not Overload Operators in Java

= Although many programming languages, such as C++, allow
you to overload operators (+, -, etc.), Java does not permit
this

= You may only use a method name and ordinary method syntax
to carry out the operations you desire

March 23, 2008 ICS102: Classes 2

- Constructors ...

= A constructoris a special kind of method that is designed to
Initialize the instance variables for an object:

public ClassName(anyParameters){code}

= A constructor must have the same name as the class

= A constructor has no type returned, not even void

= Constructors are typically overloaded

March 23, 2008 ICS102: Classes 2

... - Constructors

= A constructor is called when an object of the class is created using
new

ClassName objectName = new ClassName(anyArgs):

= The name of the constructor and its parenthesized list of
arguments (if any) must follow the new operator

= This is the only valid way to invoke a constructor: a
constructor cannot be invoked like an ordinary method

= If a constructor is invoked again (using new), the first object is
discarded and an entirely new object is created

= If you need to change the values of instance variables of the
object, use mutator methods instead

March 23, 2008 ICS102: Classes 2

-- You Can Invoke Another Method in a Constructor

= The first action taken by a constructor is to create an object
with instance variables

= Therefore, it is legal to invoke another method within the
definition of a constructor, since it has the newly created
object as its calling object

= For example, mutator methods can be used to set the values of
the instance variables

= It is even possible for one constructor to invoke another

March 23, 2008 ICS102: Classes 2

-- Include a No-Argument Constructor

= |If you do not include any constructors in your class, Java will
automatically create a default or no-argument constructor
that takes no arguments, performs no initializations, but
allows the object to be created

= If you include even one constructor in your class, Java will
not provide this default constructor

= If you include any constructors in your class, be sure to
provide your own no-argument constructor as well

March 23, 2008 ICS102: Classes 2

10

- Default Variable Initializations

= Instance variables are automatically initialized in Java

= boolean types are initialized to false

= Other primitives are initialized to the zero of their type

= Class types are initialized to null

= However, it is a better practice to explicitly initialize instance
variables in a constructor

= Note: Local variables are not automatically initialized

March 23, 2008 ICS102: Classes 2 11

- The methods equals and toString

= Java expects certain methods, such as equals and toString, to
be in all, or almost all, classes

= The purpose of equals, a boolean valued method, is to compare
two objects of the class to see if they satisfy the notion of "being
equal“
= Note: You cannot use == to compare objects

public boolean equals(ClassName ob jectName)

= The purpose of the toString method is to return a String
value that represents the data in the object

public String toString()

March 23, 2008 ICS102: Classes 2 12

- Example ...

import jawva.util.Scanner;

public class DateSixthTry
{

private 5tring month;
private int day;
private int wyear; a four digit number.

public woid setDate(int monthInt, int day, int wyear)

i
it (dateOK(monthInt, day, year))
{
this.month = monthString (monthInt) ;
this.day = day;
this.year = wyear;)
) There are three different
alse methods r ned setDate.
{
System.out.println("Fatal Error');
System.exit(0);
¥
¥

public woid setDate(5tring monthString, int day, int wear)

i
it (dateldK(monthString, day. year))
{
this.month = monthString:
this.day = day;
this.year = wyear;
¥
else
{
System.out.println("Fatal Error');
System.exit(0);
}
¥

public woid setDate(int year) . .
1 -—‘_—_‘_‘_'_——‘—-—-—_._,_ Twe different methods
setDate(l, 1, year): _‘_._.——-—'—_'_'—_—'_'—_' named setDate.

}
March 23, 2008 ICS102: Classes 2

... - Example ...

private boolean dateOK(int monthInt, int dayInt, int yearInt)
{
return ((monthInt >= 1) &% (monthInt <= 12) && T~
(dayInt >= 1) && (dayInt == 31) && methods named
Int >= 1000) && Int <= 9999)): R
} (yearInt >) (yearlInt <)) datelK.
private boolean dateOK(5tring month5tring, int dayInt, int yearlInt)
{

il - .
Tweo differsnt

return { monthOK({month5tring) &&
{(dayInt == 1) && (dayInt == 31) &&
{yearInt == 1060) && (yearInt == 99993);

¥

private boolean monthOK({5tring month)

{

return (month.equals("January") || month.equals({"February"} ||

month.equals{("March") || month.equals("April") ||
month.equals("May") || month.equals{"June") ||
month.equals("July"™) || month.equals{"August") ||
month.equals("September") || month.equals({"October") ||
month.equals({("November") || month.equals("December") J;

¥

March 23, 2008 ICS102: Classes 2

14

... - Example ...

public void readInput()

{
boolean tryAgain

Scanner keyboard
while (tryAgain)
i

true;
new Scanner(System.in);

System.out.println{"Enter month, day, and year.");
System.out.println{"Do not use a comma.");
String monthInput = keyboard.next();
int dayInput = keyboard.nextInt();
int yearInput = keyboard.nextInt();
it (dateOK(monthInput, daylnput, yearInput))
{
setDate(monthInput, dayInput, yearInput);
tryAgain = false;
}
else
System.out.println("Illegal date. Reenter input.");

}
}
:The rest of the methods are the same as in Display 4.9, except that

the parameter to equals and precedes is, of course of type DateSixthTry.>

}
March 23, 2008 ICS102: Classes 2

15

... - Example ...

public class OverloadingDemo

{
public static void main(5tring[] args)
{

DateSixthTry datel = new DateSixthTry(),
date2 = new DateSixthTry(),
date3d = new DateSixthTry();

datel.setDate(l, 2, 2088);

datel.setDate("February", 2, 2008);

date3.setDate(2088);

System.out.println(datel);

System.out.println(datel);

System.out.println(dated);

}
I

March 23, 2008 ICS102: Classes 2

16

... - Example

import java.uwutil.Scammer g

public class Date

i
private Strimg month ;
private int day;
private imt year; S/a FTour digit

public Date D

[il ——

month = "January™;
dawy = 1;
wveaear = 180840 ;

public Dateint moanthInt,

imt daw,

Are AATS5S.

whoss oblects

nmumbear.

No-argument cons tructor

inmt waarl)

i . : , -
YOow SAan inwke anotiler
saethate (monthInt d 2ArD) § | L o
3 C " = w xs ——— miethod nside a
cons tructor dAsfinitdon.
public DotedString monthString, int day, int weaar)
i
sethaote (monthString, 4day, wearl;
¥
public Daoteinmt ywaarl)
i N P . "
A constructor uswally infkiaizes ai
sathDaote (1L 1 2ar; s - . q .
3 L. b i — s Lances variables, sven iF theare is not =S
corresponding pararmet=r
public DoteDate alate)
{
if CalDate == MLl ' Not a real date. ! have more to
L rabout this
System.out.primtln"Fatal Error."™>); COonshruci-or im
Swstaem.aexit{(@D; —=—— Chapter 5. Although
F you hEve had enough
materia! to wss tHhis
momnth = abate.momnth; CORNSTILCTOn YO e
day = aDate.day ; not worty atout it
vear = aDate.year; until Section 5.5 of
¥ Chapter 5.

March 23, 2008

1CS102: Classes 2

fcomtinued)

17

March 23, 2008

THE END

ICS102: Classes 2

18

