

Outline	
> INTRC	DUCTION
> GEOLO	OGY
 (Seismic Part) SEISMIC EQUIPMENT FIELD GEOMETRY NOISE ANALYSIS PRE-PROCESSING PROCESSING INTERPRETATION 	 (Geo-electric Part) BACKGROUND INSTRUMENTAL USED GEOMETRY PARAMETERS PARAMETERS AND MEASUREMENTS PROCESSING INTERPERTATION
> INTEGI	RATION
> CONCL	USION

LOCATION

- The area that we agreed on doing the experiment in, is Dhahran Techno Valley.
- It lies over the proven Dammam reservoir.
- By knowing the weathering layers properties over this region it could help in reflection seismic " static correction".

					-	Rentered		
PROCES	SING		-					
• Processing	→ Filteri	ing:	1					
	El-anay] Spa1 🗠) Spa.2 🖾 Spa.3 🗠 Spa.4	🔛 Rho 🗈	🗅 Dev. 🔛	SYSCAL multi e M 🛛 Sp	ectodes	
Prosys II								
Filtering data Min value Max value -2.062 Vp 49.680 0.041 In 390.089 -1567.172 Rho 1088.227								
0.000 Dev. 999.000		236	Wenner-Schlumberger	115.00	160.00	135.00	140.00	66.33
0.000 M 0.000		237	Wenner-Schlumberger	115.00	150.00	130.00	135.00	64.25
	7 Help	238	Wenner-Schlumberger	115.00	140.00	125.00	130.00	51.79
		239	Wenner-Schlumberger	120.00	165.00	1/0.00	1/5.00	46.00
1 The		240	Wenner-Schlumberger	120.00	155.00	135.00	140.00	53.57
- / / / / / -		242	Wenner-Schlumberger	120.00	145.00	130.00	135.00	38.74
		243	Wenner-Schlumberger	120.00	135.00	125.00	130.00	37.31
		Rata :	239 / 255					C:\C

• Make a fil	e readable by the	interpretation software:		
		Prosys		x
Proxys Software Le Communication er open as file Save as Ker Soft and save Import Electre file Display options	Docising View Tools Help Spa.1 Spa.2 Spa. Biclimager Resizdiniv / Resi3diniv Resiz IP	Enter title for dels end test 1 bin Electricite energy: Dipole Dipole Ward energy: Dipole Dipole X Jaccaton distance Along ground surface Tess Sorizonne	Ae Res26 nv Res26 nv Res2d nv	Rest.1.det

PROCESSING	-		
Vertical Electrical Soundi	ng (VES	S):	
•Click on " File Extract and Save", then "Spreadsheet Se	ounding".		
🕮 Prosys II Software			
Eile Communication Processing Yiew Tools Help			
	SYSCAL multi electodes		
# El-array 🖾 Spa.1 🖾 Spa.2 🖾 Spa.3 🖾 Spa.4 🛍 Rho 🔛 Dev. 🔛	M 🖾 Sp 🖾 Vp	🖾 In	
• Enter the X location (mid-point of the quadripoles, in m	eters).		
	AB/2	ohm-m	
	75	74.95	
	7.5	14.95	
	12.5	67.12	
Sounding location (mid point) : 80	17.5	67.15	
Centered span window : 5	22.5	78.58	
	275	02.17	
Keep non symmetrical quadripoles		93.17	
	32.5	107.46	
	37.5	120.62	
the second se	42.5	130.44	
	47.5	140.37	
	47.5	110.57	

21

