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In this paper, we derive closed-form expressions for capacity statistics of the maximal ratio
combining (MRC) system, taking into account the effect of imperfect channel estimation
at the receiver. The channel considered is a slowly varying flat Rayleigh fading that is
also spatially independent. The combiner weights are assumed to be affected by Gaussian
errors at the receiver. In particular, we derive the moment generating function (MGF),
complementary cumulative distribution function (CDF) and the probability density function
(PDF) of the capacity. Furthermore, we derive closed-form expressions for the system
capacity when employing different adaptive transmission schemes such as (1) optimal
power and rate adaptation (opra); (2) constant power with optimal rate adaptation (ora);
and (3) channel inversion with fixed rate (cifr). Analytical results show accurately the
impact of the channel estimation error on the achievable spectral efficiency.

Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

It is widely accepted that using diversity at the transmitter or at the receiver of a wireless communication system can
improve significantly the performance of wireless links. Diversity combining, which skillfully combines multiple replicas of
received signals has long been as one of the most efficient techniques to overcome the destructive effects of multipath fading
in wireless communication systems. There are several diversity combining methods employed in communication receivers
including maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC), and a combination of
MRC and SC, called generalized selection combining (GSC). By definition, MRC combiner linearly combines the individually
received branch signals so as to maximize the instantaneous output signal-to-noise ratio (SNR) [1–3].

Most system designs assume that perfect channel estimation is available at the receiver. In practice, however, the channel
gains have to be estimated at the receiver for diversity combining which can be obtained either from a pilot signal or data
signals (by applying a clairvoyant estimator). The work in [4] analyzed the performance of MRC with pilot tone-based
weighting on frequency-selective Rayleigh fading channels. The pilot tone was assumed to be separated from the data signal
and the resulting channel-estimation error was shown be to be Gaussian. Previous work on the analysis of imperfect channel
estimation with no diversity can be found in [5] and [6]. In [7], Gans modeled the channel estimation errors as complex
Gaussian and derived the distribution of the SNR statistics which has been used by Tomiuk in [8] to obtain the average
probability of error for the MRC diversity schemes.

* Corresponding author. Faxes: +61 3 9925 2007, +61 3 9925 3242, +61 3 9925 3748.
E-mail addresses: fawaz.alqahtani@student.rmit.edu.au (F.S. Al-Qahtani), zummo@kfupm.edu.sa (S.A. Zummo), arun.gurung@student.rmit.edu.au

(A.K. Gurung), zmhussain@ieee.org (Z.M. Hussain).
1051-2004/$ – see front matter Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2009.04.010

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:fawaz.alqahtani@student.rmit.edu.au
mailto:zummo@kfupm.edu.sa
mailto:arun.gurung@student.rmit.edu.au
mailto:zmhussain@ieee.org
http://dx.doi.org/10.1016/j.dsp.2009.04.010


86 F.S. Al-Qahtani et al. / Digital Signal Processing 20 (2010) 85–96
The pioneering work of Shannon [9] has established the significance of channel capacity as the maximum possible rate at
which information can be transmitted over a channel. In [11], the capacity of a single user flat fading channel with perfect
channel information at the transmitter and the receiver is derived for various adaptation policies, namely, (1) optimal rate
and power adaptation (opra), (2) optimal rate adaptation and constant power (ora), and (3) channel inversion with fixed
rate (cifr). The first scheme requires channel information at the transmitter and receiver, whereas the second scheme is
more practical since the transmission power remains constant. The last scheme is a suboptimal transmission adaptation
scheme, in which the channel side information is used to maintain a constant received power by inverting the channel
fading [11]. The general theory developed in [11] was applied to derive closed-form expressions for the capacity of Rayleigh
fading channels under different adaptive transmission and diversity combining techniques [12]. Recently, there has been
some work dealing with the channel capacity of different fading channels employing different adaptive schemes such as
[13,14], and the references therein.

In this paper, we extend the results in [12] to obtain closed-form expressions for the single-user capacity of MRC system,
in the presence of Gaussian channel estimation errors. In addition, we investigate the capacity statistics of MRC scheme
which are valid for arbitrary number of receive antennas including moment generating function (MGF), cumulative distri-
bution function (CDF) and probability density function (PDF). The contributions of this paper are two-fold. Firstly, we derive
the capacity statistics of MRC receiver subject to Rayleigh fading for arbitrary number of diversity branches, in the presence
of Gaussian estimation errors. Secondly, we derive closed-form expressions for the channel capacity of MRC in indepen-
dent and identically distributed (i.i.d.) Rayleigh fading channels with the following adaptive transmission schemes (1) opra;
(2) ora with constant transmit power; and (3) cifr. The paper is organized as follows. In Section 2, the system model is
discussed. The capacity statistics are derived in Section 3. In Section 4, we derive closed-form expressions for the channel
capacity under different adaptation schemes. Results are presented and discussed in Section 5. The main outcomes of the
paper are summarized in Section 6.

2. System model

Consider an L-branch diversity receiver in slow fading channels. Assuming perfect timing and inter-symbol interference
(ISI) free transmission, the received signal on the lth branch due to the transmission of a symbol s can be expressed as

rl = gls + nl, l = 1, . . . , L, (1)

where gl is a zero-mean complex Gaussian distributed channel gain, nl is the complex additive white Gaussian noise (AWGN)
sample with a variance of N0/2, and s is the data symbol taken from a normalized unit-energy signal set with an average
power P s . The actual channel gains of L diversity branches are i.i.d. random variables. The PDF of the received instantaneous
SNR was firstly derived by Gans [7] and revisited by Tomiuk et al. [8]. The pdf of the received instantaneous SNR is expressed
as

pγ (γ ) =
L∑

k=1

(
L − 1

k − 1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k

γ k−1e
−γ
γt , (2)

where
(L−1

k−1

)
(ρ2)k−1(1 − ρ2)L−k is representing the weighting coefficients in the sum of L branches and it is known as

Bernstein polynomials, and γt is the average SNR per bit per branch (γt = Eb
N0

). The factor ρ denotes the correlation between
the actual channel coefficients gl and their estimates ĝl . The actual channel gain can be related to the channel estimate by

gl = ρ ĝl + zl, (3)

where zl is a complex Gaussian random variable independent of ĝl with zero mean and variance σ 2
z defined as ρ =

cov(gl ,̂gl)√
var(gl)var(̂gl)

. In a system with no estimation errors, ρ2 = 1, and hence the distribution of γ in (2) reduces to

pγ (γ ) =
(

1

γt

)L
γ L−1

Γ (L)
e

−γ
γt . (4)

3. Capacity statistics

In this section, we focus on deriving the exact analytical expressions for capacity statistics of MRC over Rayleigh fading
channels, assuming perfect channel knowledge at the receiver and no channel knowledge at the transmitter with average
input-power constraint. The non-ergodic capacity of MRC system is given in [bit/s/Hz] by [9] as

C = log2(1 + γ ). (5)
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3.1. Moment generating function (MGF)

The MGF of the capacity of MRC system in the presence of Gaussian channel estimation errors in the branch weights is
given by

ΦC (τ ) = E
[
eτC ] = E

[
(1 + γ )

τ
ln(2)

]
. (6)

Expressing the expectation in an integral form over the PDF pγ (γ ) and inserting (2), we obtain

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k

×
∞∫

0

(1 + γ )
τ

ln(2) γ k−1 exp

(−γ

γt

)
dγ

︸ ︷︷ ︸
I1

. (7)

The integral I1 can be obtained by making the change of variables x = 1 + γ and the integral region to yield

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k

exp

(
1

γt

)
×

∞∫
1

x
τ

ln(2) (x − 1)k−1 exp

(−x

γt

)
︸ ︷︷ ︸

I2

dx. (8)

In order to obtain a closed-form MGF expression, we need to evaluate the above integral I2. We first expand the term
(x − 1)k−1 as a finite sum, resulting

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k

exp

(
1

γt

) n∑
i=0

(
k − 1

i

)
(−1)k−i−1

∞∫
1

x( τ
ln(2)

+i) exp

(−x

γt

)
dx. (9)

With the help of the equality [16]
∞∫

u

xn−1e−μx dx = μ−nΓ (n, uμ), (10)

we obtain MGF expression in closed-form as

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k

e( 1
γt

)
k−1∑
i=0

(
k − 1

i

)
(−1)k−i−1γ

( τ
ln(2)

+i+1)

t Γ

((
τ

ln(2)
+ i + 1

)
,

1

γt

)
, (11)

where Γ (a, x) = ∫ ∞
x ta−1e−t dt ∀{a, x} � 0 denotes the upper incomplete Gamma function.

Furthermore, the integral in (7) can be evaluated in another form with help of the integral representation of the confluent
hypergeometric function Ψ (a,b; z) [16]

Ψ (a,b; z) = 1

Γ (a)

∞∫
0

e−ztta−1(1 + t)b−a−1 dt. (12)

The MGF can be expressed in closed form as

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

( 1
γt

)k

Γ (k)
Ψ

(
k,

τ

ln(2)
+ 1 + k; 1

γt

)
. (13)

Note that using alternative notation for Ψ (a,b; z) = z−a
2 F0(a,1 + a − b; . ;−1/z) where 2 F0(. , ; . : .) is a generalized

hypergeometric series [16], the MGF of C can simply be written as

ΦC (τ ) =
L∑

k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)
2 F0

(
k,− τ

ln(2)
− 1;−γt

)
. (14)

3.2. Complementary cumulative distribution function (CCDF)

The CDF of C is defined as follows

FC (C) = Prob(C � C) =
2C −1∫

pγ (γ )dγ . (15)
0
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Averaging over the distribution of received instantaneous SNR gamma in (2) results in

FC (C) =
L∑

k=1

(
L − 1

k − 1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k 2C −1∫
0

γ k−1e
−γ
γt dγ . (16)

In order to evaluate the integral with respect to γ , we make use of the following equality [16]
x∫

0

sν−1e−μs ds = μ−νγ (ν,μx), (17)

where γ (.,.) is the incomplete Gamma function. Since the factor ν in (17) is integer, we can replace the incomplete Gamma
function by its finite sum representation [16] given by

γ (ν,μx) = (ν − 1)!
[

1 − e−xμ

(
ν−1∑
m=0

xm

m!μm

)]
. (18)

After replacing the integral in (16) with its closed-form and simplifying, we obtain the expression for the CDF as

FC (C) =
L∑

k=1

(
L − 1

k − 1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

[
(k − 1)!

γ k
t

− e− 2C −1
γt

k−1∑
n=0

(k − 1)!
n!

(2C − 1)n

γ k−n
t

]
. (19)

Thus, the complementary CDF can be obtained from (16) as follows

F C (C) = 1 −
L∑

k=1

(
L − 1

k − 1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

[
(k − 1)!

γ k
t

− e− 2C −1
γt

k−1∑
n=0

(k − 1)!
n!

(2C − 1)n

γ k−n
t

]
. (20)

3.3. Probability density function (PDF)

The PDF of C is defined as the derivative of FC (C) with respect to C . Taking the derivative of FC (C) in (19) results in

PC (C) = d

dC
FC (C) = 2C ln(2)

L∑
k=1

(
L − 1

k − 1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k(
2C − 1

)k−1
e

−(2C −1)
γt . (21)

Note that (21) can also be obtained from (2) by performing the transformation of random variable γ → C . The Jacobian of
such transformation is J (γ ) = d

dγ = 1
ln(2)(1+γ )

, PC (C) can be easily obtained as PC (C) = 2C ln(2)pγ (2C − 1) which leads to
the same result in (21).

4. Adaptive capacity policies

In this section, we derive closed-form expressions for different adaptive schemes employing MRC with imperfect channel
estimation over Rayleigh fading channels. In the derivation, we will rely on the main results from [12].

4.1. Power and rate adaptation (opra)

Given an average transmit power constraint, the channel capacity Copra in (bits/s) of a fading channel [11,12] is given by

Copra = B

ln 2

∞∫
γ0

ln

(
γ

γ0

)
pγ (γ )dγ , (22)

where B (in hertz) is the channel bandwidth and γ0 is the optimum cutoff SNR satisfying [11]
∞∫

γ0

(
1

γ0
− 1

γ

)
pγ (γ )dγ = 1. (23)

To achieve the capacity in (22), the channel fading level must be tracked at both transmitter and receiver. The transmitter
has to adapt its power and rate accordingly by allocating power levels and transmission rate for good channel condition
(large γ ). Since the transmission is suspended when γ < γ0, this policy suffers outage whose probability Pout is defined
the probability of no transmission and is given by

Pout = 1 −
∞∫

pγ (γ )dγ . (24)
γ0
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However, Copra in (22) can be expressed in terms of the CDF of γ by applying integration by-parts resulting in

Copra

ln(2)
B = −

∞∫
γ0

1

γ
Fγ (γ )dγ . (25)

Substituting (2) into (23) yields the equality

L∑
k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)

(
1

γt

)k
[ ∞∫

γ0

γ k−1

γ0
e

−γ
γt −

∞∫
γ0

γ k−2e
−γ
γt

]
dγ = 1. (26)

Using (26) along with the fact in (10), it is found that optimal cutoff SNR, γ0 has to satisfy the following equality

L∑
k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
[

γt

γ0
Γ

(
k,

γ0

γt

)
− Γ

(
k − 1,

γ0

γt

)]
= Γ (k)γ k

t . (27)

To obtain the optimal cutoff SNR γ0, in (26), we follow the following procedure. Let x = γt
γ0

and define fMRC(x) as

fMRC(x) =
L∑

k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
[

Γ (k, x)

x
− Γ (k − 1, x)

]
− Γ (k)γ k

t . (28)

Now, differentiating the function fMRC(x) with respect to x over the interval ]0,+∞[ results in

f ′
MRC(x) = −

∑L
k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k(ρ2)Γ (k, x)

x2
. (29)

Hence, f ′
MRC(x) < 0,∀x > 0, meaning that f ′

MRC is a strictly decreasing function of x. From (28) it can be observed that
limx→0 fMRC(x) = +∞ and limx→+∞ fMRC(x) = −Γ (k)γ k

t . Note however that fMRC(x) is a continuous function of x, which
leads to a unique positive γ0 such that fMRC(x) = 0. We thereby conclude that for each γt > 0 there is a unique γ0 satisfying
(28). Numerical results using MATLAB shows that γo ∈ [0,1] as γt increases, and γo → 1 as γt → ∞.

Now, substituting (2) into (22) yields the channel capacity with opra scheme as follows

Copra

B ln(2)
=

∞∫
γ0

L∑
k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
ln

(
γ

γ0

)
γ k−1

Γ (k)γ k
t

e− γ
γt dγ . (30)

The summation in (30) is of finite order, and hence, the order of summation and integral can be inverted to yield

Copera

B ln(2)
=

L∑
k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
∞∫

γ0

ln

(
γ

γ0

)
γt

(γtγ )k−1

Γ (k)
e− γ

γt dγ

︸ ︷︷ ︸
I3

. (31)

The integral I3 can be evaluated using the identity [12]

Js(μ) =
∞∫

1

ts−1 ln(t)e−μt dt = Γ (s)

μs

{
E1(μ) +

s−1∑
k=1

1

k
Pk(μ)

}
, (32)

where E1 denotes the exponential integral of the first order [16] defined as

E1(x) =
∞∫

1

exγ

γ
dγ , x � 0, (33)

and Pk(μ) denotes the Poisson distribution [16] given by

Pk(x) = Γ (k, x)

Γ (k)
= e−x

k−1∑
i=0

xn

n! . (34)

Substituting (32) into (31) implies that closed-form expression for capacity Copra per unit bandwidth (in bits/s/Hz) can
be expressed

Copra

B ln(2)
=

[
E1

(
γ0

γt

)
+

L∑
k=1

{(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k ×
k−1∑
i=1

Pi
( γ0

γt

)
i

}]
. (35)
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4.1.1. Asymptotic approximation
We can obtain asymptotic approximation of Copra as γt → ∞ using the series representation of exponential integral of

the first order [16] given by

E1(x) = −E − ln(x) −
+∞∑
i=1

(−x)i

i.i! , (36)

where E = 0.5772156659 is the Euler–Mascheroni constant. Then, the opra capacity per unit bandwidth (in bits/s/Hz) is
approximated asymptomatically as

C∞
opra

B ln(2)
	

[(
−E − ln

(
γ0

γt

)
+

(
γ0

γt

))
+

L∑
k=1

{(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k ×
k−1∑
i=1

Pi
( γ0

γt

)
i

}]
. (37)

4.1.2. Upper bound
The capacity expression of Copra can be upper bounded by applying Jensen’s inequality to (22) as CUP

opra = ln(E[γ ]). Then,

we evaluate CUP
opra using the pdf of γ given in (2) and the identity defined in (10) for Re[μ] > 0. Simplifying the resulting

expression, we obtain an upper bound on the opra capacity which is given by

CUB
opra

B
= ln

(
L−1∑
k=0

1

γt

(
L − 1

k

)(
ρ2)k−1(

1 − ρ2)L−k

)
. (38)

4.2. Constant transmit power

By adapting the code rate to channel fading state with the transmission power being constant, the channel capacity of
this scheme, referred to as optimal rate adaptation ora is given by [9,10]

Cora = B

ln 2
=

∞∫
0

ln(1 + γ )pγ (γ )dγ . (39)

Inserting (2) into (39) yields

Cora =
L−1∑
k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
∞∫

0

ln(1 + γ )
γ k−1

Γ (k)γ k
t

e
−γ
γt

︸ ︷︷ ︸
I4

dγ . (40)

An integral similar to the integral I4 was evaluated in [12] using Poisson distribution, and the result is given by

I4 = Pk

(−1

γt

)
E1

(
1

γt

)
+

k−1∑
i=1

Pi
(−1

γt

)
Pk−i

(−1
γt

)
i

. (41)

Substituting (41) in (40), results in a closed-form expression for the ora capacity with MRC and channel estimation errors
per unit bandwidth (in bits/s/Hz), which can be expressed as

Cora =
L∑

k=1

{(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k ×
[

Pk

(−1

γt

)
E1

(
1

γt

)
+

k−1∑
i=1

Pi
(−1

γt

)
Pk−i

(−1
γt

)
i

]}
. (42)

4.2.1. Asymptotic approximation
Following a similar argument to one used to asymptotically approximate the opra capacity, the approximated ora capacity

C∞
ora per unit bandwidth (in bits/s/Hz) is obtained as

C∞
ora

B
=

L∑
k=1

{(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k

[
Pk

(−1

γt

)[
−E − ln

(
1

γt

)
+ 1

γt

]
+

k−1∑
i=1

Pi
(−1

γt

)
Pk−i

(−1
γt

)
i

]}
. (43)

4.2.2. Upper bound
The capacity Cora can be upper bounded by applying Jensen’s inequality to (22) as follows

CUB
ora = ln

(
1 + E[γ ]), (44)

and the upper bound can be written as

CUB
opra

B
= ln

(
1 +

L−1∑
k=0

γt

(
L − 1

k

)(
ρ2)k−1(

1 − ρ2)L−k

)
. (45)
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4.2.3. Higher SNR region
The Shannon capacity can be approximated at high SNR region using the fact log2(1 +γ ) = log2(γ ) as γ → ∞ for x > 0

yields an asymptotically tight bounds for (42) in high SNR per unit bandwidth (in bits/s/hertz) as

Chigh
est-error

B
=

L−1∑
k=0

(
L − 1

k

)(
ρ2)k−1(

1 − ρ2)L−k
[
ψ(k) − ln

(
1

γt

)]
(46)

where ψ(x) denotes Psi function defined as ψ(x) = d
dx ln(Γ (x)). For integer values of x, Psi can be represented as ψ(x) =

−E + ∑x−1
i

1
i .

4.2.4. Lower SNR region
We can approximate Shannon capacity in low SNR region by the square capacity of the argument (gamma) in low SNR

region as log2(1 +γ ) ≈ √
γ [15]. Upon using this approximation along with definition of incomplete gamma function yields

the approximated Shannon at low SNR per unit bandwidth (in bits/s/hertz) as

C low1
est-error

B
≈

L−1∑
k=0

1

γt

(
L − 1

k

)(
ρ2)k−1(

1 − ρ2)L−k Γ (k + 1
1 )

γ (k)

√
γt . (47)

4.2.5. Lower SNR region II
The Shannon capacity can be approximated as well in low SNR region by exploiting the fact log2(1+γ ) ≈ 1

ln(2)
(γ − 1

2 γ 2)

gives the approximated Shannon capacity in low SNR region per unit bandwidth (in bits/s/hertz)

C low1
est-error

B
≈

L−1∑
k=0

1

γt

(
L − 1

k

)(
ρ2)k−1(

1 − ρ2)L−k
γt

[
k −

(
(k + 1)γt

t

)]
. (48)

4.3. Channel inversion with fixed rate

We consider two schemes: truncated channel inversion with fixed rate, referred to as tifr, and channel inversion with
fixed rate with no truncation, which we shall refer to as cifr. Channel inversion is an adaptive transmission technique where
the transmitter uses the channel information feedback by the receiver in order to invert the channel fading. Accordingly,
the channel appears to the encoder/decoder as a time invariant AWGN channel. As a result, channel inversion suffers a
large capacity penalty compared to the previous adaptation techniques (opra and ora), although it is much less complex
to implement. The channel inversion technique requires a fixed code design and fixed rate modulation. In this case, the
channel capacity Ccifr can be derived from the capacity of an AWGN channel with a received SNR and is given by [11,12]

Ccifr = B ln

(
1 + 1∫ ∞

0
1
γ pγ (γ )dγ

)
. (49)

The channel capacity with the truncation scheme Ctifr is given by [12]

Ctifr = B ln

(
1 + 1∫ ∞

γ0

1
γ pγ (γ )dγ

)
(1 − Pout), (50)

where Pout is the outage probability. Note that, the cutoff level γ0 can be chosen to either maximize Ctifr or achieve a
specific Pout.

4.3.1. tifr
The integral in (50) can be evaluated using the PDF of the combiner output SNR given in (2) as

∞∫
γ0

1

γ
p(γ )dγ =

L∑
k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)γt

∞∫
γ0

γ k−2e
−γ
γt dγ =

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)γt
Γ

(
k − 1,

γ0

γt

)
. (51)

Furthermore, the outage probability, Pout is derived from the CDF of the combiner output SNR, and is given by

Pout = 1 −
L∑

k=1

(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
e−( γ0

γt

) k−1∑
i=0

( γ0
γt

)
i! . (52)

Combining (51) and (52), the following closed-form expression for the tifr capacity per unit bandwidth (in bits/s/Hz) is
obtained
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Fig. 1. The PDF of the channel capacity of MRC systems with L = 3 at γt = 15 dB and different values of ρ2.

Ctifr

B
=

(
1 + γt∑L

k=1{
(L−1

k−1

) (ρ2)k−1(1−ρ2)L−k

Γ (k)
Pk−1(

γ0
γt

)}

)
L∑

k=1

{(
L − 1

k − 1

)(
ρ2)k−1(

1 − ρ2)L−k
Pk

(
γ0

γt

)}
. (53)

On the other hand, when ρ2 = 1, the capacity Ctifr is given by

Ctifr

B
=

(
1 + γt(M − 1)

Pk−1
( γ0

γt

) )
Pk

(
γ0

γt

)
(54)

which leads to the same result obtained in [12].

4.3.2. cifr
If we set γt = 0, we get the cifr capacity, where in this case the Pout is equivalent to zero. From (49) and (2)

∞∫
0

1

γ
p(γ )dγ =

L∑
k=1

(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

Γ (k)γt
Pk−1

(
γ

γt

)
. (55)

By inserting (55) and (2) in (49) yields the cifr capacity per unit bandwidth (in bits/s/Hz) as follows

Ccifr

B
=

(
1 + γt

limγ →0
∑L

k=1

{(L−1
k−1

) (ρ2)k−1(1−ρ2)L−k

Γ (k)
Pk−1

( γ
γt

)})
. (56)

Note that limγ →0 Pk−1(x) = 1, and hence, the cifr capacity reduces to

Ccifr

B
=

(
1 + (M − 1)γt∑L

k=1

{(L−1
k−1

)
(ρ2)k−1(1 − ρ2)L−k

})
. (57)

The result in (57) can be expressed for perfect channel estimation ρ2 = 1 as follows

Ccifr

B
= (

1 + (M − 1)γt
)
, (58)

which is consistent with the result obtained in [12].

5. Numerical results

In this section we provide some numerical results that illustrate the mathematical derivation of the channel capacity
per unit bandwidth as a function of average receiver SNR (γt ) in dB for different adaptation policies with MRC over slow
Rayleigh fading with weight estimation errors. All curves provided are obtained using the closed-form expressions, (14),
(20), (21), (35), (37), (38), (46), (47), (48), (42), (43), (45), and (53).

Fig. 1 depicts the PDF curves for different values of the correlation coefficient squared ρ2, considering an average SNR
per branch of γt = 15 dB and L = 3. This figure shows that the capacity distribution has a Gaussian-like shape even in the



F.S. Al-Qahtani et al. / Digital Signal Processing 20 (2010) 85–96 93
Fig. 2. The CCDF of the channel capacity of MRC systems with L = 3 at γt = 15 dB and different values of ρ2.

Fig. 3. Capacity per unit bandwidth for MRC systems with L = 3 and different values of ρ2 under the opra adaptation policy.

presence of channel estimation errors. As expected, the distribution of C shift towards the left indicating a decreasing value
of its mean as the value of ρ2 decreases. Fig. 2 considers the same setting in Fig. 1 and depicts the CCDF curves for different
values of ρ2, with very similar observations.

Fig. 3 compares Copra for different values of correlation between the channel and its estimate; namely, ρ2 = 0.3, ρ2 = 0.5,
ρ2 = 0.7, ρ2 = 0.9 and ρ2 = 1. It can be noticed the highest Copra that can be achieved is when ρ2 = 1. Furthermore, Copra

decreases when the value of ρ2 decreases where in this case the weight error increases. It can be observed from Fig. 3 that
there is almost a 7 dB difference in Copra between ρ2 = 1 and ρ2 = 0.3.

In addition, Fig. 3 depicts the asymptotic capacity approximation expressed in (37) and the upper bound expressed in
(38). As expected, both approximation and upper bound show a good match to the exact capacity values. Figs. 4 and 5 show
the capacity of opra and tifr schemes for different values of ρ2, respectively.

In Fig. 4, the exact, asymptotic, and upper bound of the average capacity Cora are plotted against γt for different values
of ρ2 {0.3,0.5,0.9 and 1} when L = 3. As it can be observed from Fig. 4 that the difference in the capacity of ora between
ρ2 = 1 and ρ2 = 0.3 is increasing along with the increase of the average of received SNR per branch γt which makes it
more sensitive to the estimation errors than opra policy. However, both opra and ora achieve the same result when there
is no power adaptation implemented at the transmitter as in opra.
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Fig. 4. Capacity per unit bandwidth for MRC systems with L = 3 and different values of ρ2 under the ora adaptation policy.

Fig. 5. Capacity per unit bandwidth for MRC systems with L = 3 and different values of ρ2 under the tifr adaptation policy.

Fig. 5 depicts the capacity of the tifr policy for different values of ρ2. The tifr policy performs the worst compared to
the other adaptation policies. However, the loss due to the estimation errors is very high, which is almost 20 dB difference
between ρ2 = 1 and ρ2 = 0.3. It can be observed that when there is no data to be transmitted because of the outage
event, the tifr policy suffers an outage probability which is larger than the outage probability suffered by the opra policy.
In addition, we note that the correlation ρ2 has a greater influence on tifr than it has on opra and the decrease in outage
probability with increase in γt is faster for opra than tifr. Fig. 6 compares the capacity Ctifr for different number of diversity
branches; namely, L = 2,3,4,5 for γt = 15 dB and different values of γ0. Fig. 7 depicts the behavior of Ctifr against the
optimal cutoff SNR, γ0 for different values of ρ2 and fixed L = 3. As can be seen that Ctifr becomes almost flat when the
value of ρ2 decreases which experiences a large capacity loss. As L increases, Ctifr achieves a small increase and this small
increase diminishes as ρ2 decreases and the average SNR γt increases.

6. Conclusion

The channel capacity statistics of MRC including the probability density function (PDF) and cumulative distribution func-
tion (CDF) as well as the moment generating function (MGF) is studied. Furthermore, the channel capacity of unit bandwidth
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Fig. 6. Capacity per unit bandwidth for MRC systems with different diversity orders and ρ2 = 1 under the tifr adaptation policy at γt = 15 dB.

Fig. 7. Capacity per unit bandwidth for MRC systems with L = 3 and different values of ρ2 versus optimal cutoff SNR, γ0 under the tifr adaptation policy at
γt = 15 dB.

for different adaptation policies including their approximations and upper bounds over a slow Rayleigh fading channel for
MRC with estimation error was discussed. Our numerical results showed that for the same bandwidth, the capacity in-
creases with an increase of the diversity order L and an increase of the average γt per branch. Also, the result showed that
Copra outperforms Cora and Ctifr , and is less sensitive to the estimation error when compared to other policies. However, Ctifr
performs the worst among the other policies because it suffers a large capacity penalty due to the estimation error whereas
it is less complex to implement.
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