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the single-user capacity of generalized selection combiners (GSC)
system, taking into account the effect of imperfect channel esti-
mation at the receiver. The channel considered is a slowly varying
spatially independent flat Rayleigh fading channel. The complex
channel estimate and the actual channel are modelled as jointly
Gaussian random variables with a correlation that depends on
the estimation quality. Two adaptive transmission schemes are
analyzed: 1) optimal power and rate adaptation; and 2) constant
power with optimal rate adaptation, including derivation of an
upper bound and asymptotically tight approximations at high
and low SNR regions. Our numerical results show the effect
of Gaussian I crror on the achievable spectral
efficiency.
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I. INTRODUCTION

Spatial diversity is a well-known and efficient way to
combat multi-path fading and improve the system perfor-
mance over fading channel. The most commonly used received
diversity techniques include equal gain combining (EGC),
maximal ratio combining (MRC), selection combining (SC),
and a hybrid combination of SC and MRC, called generalized
selection combining (GSC). In the GSC, a fixed subset of size
M of a large number of available diversity channels of size L
is chosen and then combined using MRC. The MRC combines
the branch signals such that the instantaneous output signal-to-
noise ratio (SNR) is maximized [1], [2], [3].

System performance is often analyzed with the assumption
of perfect channel estimate. However, in practice the branch
signal-to-noise ratio (SNR) estimates are corrupted with chan-
nel impairments making it difficult to achieve perfect esti-
mation. Normally, a diversity branch SNR estimate can be
obtained either from a pilot signal or data signals (by applying
a clairvoyant estimator) [4]. For example, if a pilot signal
is inserted to estimate the channel, a Gaussian error may
arise in due the large frequency separation or time dispersion.
Therefore, it is important to include estimation errors in
system performance analysis. Previous works on the analysis
of imperfect channel estimation with and without diversity can
be found in [4]-[8]. The paper in [8] considers the channel
estimation error of the GSC per branch SNR as being complex
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the output combiner. The pioneering work of Shannon [9] has
established the significance of channel capacity as the max-
imum possible rate at which information can be transmitted
over a channel. Spectral efficiency of adaptive transmission
techniques has received extensive interest in the last decade.

and constant power (ora), and 3) channel inversion with fixed
rate (cifr). The first scheme requires channel information at the
transmitter and receiver, whereas the second scheme is more
practical since the transmission power remains constant. The
last scheme is a suboptimal transmission _
in which the channel side information is

constant received power by inverting the channel fading [12].
In [13], the general theory developed in [12] is applied to
achieve closed form expressions for the capacity of Rayleigh
fading channel under different adaptive transmission and diver-
sity combining techniques, also this work has been extended
to many fading scenarios environments (here within [14],[15]).
In this paper, we extend the results in [13] to obtain closed-
form expressions for the single-user capacity of SCD system,
in the presence of Gaussian channel estimation errors.

The contribution of this paper is to derive |G
for two |G schcmes including their asymp-
totic approximations and upper bounds and these schemes are:
(1) optimal simultaneous power and rate adaptation (opra).
(2) optimal rate adaptation with constant transmit power (ora)
including all its approximations that provide good measures
in high and low SNR.

The paper is organized as follows. In Section II, the system
model used in this paper is discussed. In Section III, we derive
closed-form expressions for the channel capacity under two
adaptation schemes; opra and ora including their asymptotic
approximations and upper bounds in sub-sections ITI-A and
in III-B, respectively. Results are presented and discussed in
Section IV. The main outcomes of the paper are summarized
in Section V.



II. SYSTEM MODEL

We consider an L-branch diversity receiver in slow fading
channels. Assuming perfect timing and inter-symbol interfer-
ence (ISI) free transmission, the received signal on the [th
branch due to the transmission of a symbol s can be expressed
as

rn=qs+mn, l=1...L, (1)

where g, I
gain, n; is the complex additive white Gaussian noise (AWGN)
sample with a variance of Ny/2, and s is the data symbol
taken from a normalized unit-energy signal set with an average
power P,. Under channel estimation error, the PDF of the
received instantaneous SNR +y is given by [8]
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A= F[(M +1(1 - p*)/(1 + M)] and p denotes the
correlation between the actual channel gains and their
estimates and it can be expressed as:

cov(gi, 9i)
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The actual channel gain g is related to the channel estimate g

[4] as follows
q = \/1—e2gl+ezl, 4

Where z; is a complex Gaussian random variable independent
of g with zero-mean and a unit variance and € € [0,1] is
a measure of the accuracy of the channel estimation. The
true channel is scaled to keep the covariance of the estimated
channel and the true channel to be the same. For € = 0, the
estimated channel is fully correlated with the true channel
(perfect channel estimation p = 1). Note that for perfect
channel estimation, the pdf of (2) reduces to
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ITI. ADAPTIVE CAPACITY POLICIES

In this section, we derive close-form expressions for differ-
ent adaptive schemes with GSC over Rayleigh fading channels.
In the derivation, we will rely on the main results from [13].

A. I

Given an average transmit power constraint, the channel
capacity Cyp,r, in (bits/seconds) of a fading channel [12], [13]

is given by
B o
— [ In (l)pw(v)d% (6)
Yo Yo

Copra = In2

where B (in hertz) is the channel bandwidth and ~q is the
optimum cutoff SNR satisfying the following condition
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To achieve the capacity in (6), the channel fading level must be
tracked at both transmitter and receiver. The transmitter has to
adapt its power and rate accordingly by allocating high power
levels and transmission rates for good channel conditions
(large 7). Since the transmission is suspended when v < 7o,
this policy suffers from outage, whose whose probability P,
is defined as the probability of no transmission and is given
by Pyt = 1 — f% p(y)dry. Substituting (2) into (7) yields
the equality

&l 1~ 1 (k-1
ZO;M 2)]k 1205( n) (8)
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To obtain the optimal cutoff SNR ~y, in (8), we follow
the following procedure. Let z = % and define fasc(z).
Now, differentiating the functlon fasc(x) with respect
to = over the mterval 10, +oo[ resulting in fogo(z) =

2 T

St AT ) [ ] ()
Hence fGSC(:n) < 0,Vzr > 0, meaning that
fMRC is a strictly decreasing function of .
From (8) in terms of x it can be observed that
limx—>0fGSC() = oo and lim, o0 faso(r) =

2
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however that fesc(x) is a continuous function of x, which
leads to a unique positive vy such that fgsc(z) = 0. We
thereby conclude that for each 7 > 0 there is a unique 7
satisfying fasc(x). Numerical results using MATLAB shows
that 7, € [0, 1] as ¥ increases, and vy — 1 as 7 — co. Now,
substituting (2) into (6) yields the channel capacity with opra
scheme as follows
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We evaluate [} by taking the help of the followmg 1dent1ty
[13] glven by Js(p) = [t In(t)e Hdt = L(s) {E

i kPk( )}, WhereE1 denotes the Exponentlal 1ntegral of
the first order [17] defined as Ey(z) = [~ ¢ 7d% x>0
and P, (p) denotes the poisson distribution [17] given Py (z) =
FF(](“ f) =e "y, k1 fl Up on substituting J, (1) into (9), the
following closed- form expression for capacity C,p, per unit
bandwidth (in bits/seconds/Hz) can be obtained as follows:
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The above capacity expression allows us to examine the
limiting cases for (M = L, and M = 1) more conveniently
for MRC and SC, respectively.

1) Asymptotic Approximation: We can obtain asymptotic
approximation C,p,, using the series representation of Ex-
ponential integral of first order function [17] expressed as
Ei(z) = —E-In(z) - Y% S2- where E = 0.5772156659
is the Euler-Mascheroni constant. Then, the asymptotic ap-

proximation Cg7.,, per unit bandwidth (in bits/seconds/hertz)
can be shown to be
L-M D P
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2) Upper Bound: The capacity expression of C,p, can
be upper bounded by applSng Jensen’s inequality to (6) as

(11

follows Cy%s = In{E[4] ), we can evaluate Cy, using

the pdf  given in (2) and the identity [17], [, 2"e " dx =
nlp~"~! for Re[p] > 0 and simplify the resulting expression
to obtain the capacity (6) upper bound
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By adapting the transmission rate to the channel fading
condition with a constant power, the channel capacity C,,,
[9], [10] is given by

B o0
E/O In (14 7)py(7)dr.

B. Constant Transmit Power

Cora = (13)
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Substituting (2) into (13) results in

L—-M D
Cora

Z

-y
— n!

(’21) [Alu-%ifwm]"

/Ooln <1+7>7”exp<— Al>d7. (14)
0 1

-

1>

The integral I in (14) can be evaluated by taking
use of equality [17];°In(1 + y)y'~'e™¥dy (t —
1)le” Zf_l Ml—z) where I['(.,.) is the complementary
incomplete Gamma function which can be related to the
exponential integral function FE;(x) through [17]1E;(z) =
#'~'T'(1—1,z). The integral I> can be obtained as f,~ In (1+

7)y™ exp ( > S A By <A%)

which leads to a closed-form expression for the capacity C,,,
per unit bandwidth (in bits/seconds/hertz). The capacity C,,
can be expressed in another form. It has been shown that
the integral in I, has the following form which is derived
in [13] [7In(1 + y)y'te®vdy = F(t [ (= z) By () +

Pilz)Pi—i\ - .
Zf i M] Upon substituting this result into (14)

yielding another closed-form expression for the capacity C,,,
per unit bandwidth (in bits/seconds/hertz)
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1) Asymptotic Approximation: Following the same proce-

dure in Section III-A, the asymptotic approximation C, per

unit bandwidth (in bits/seconds/hertz) can be computed as

Jo e
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2) Upper Bound: The capacity C,,, can be upper bounded
by applying Jensen’s inequality to (6) as follows

(16)
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Fig. 3. Capacity per unit bandwidth for a Rayleigh fading channel
with SCD (L = 4,M = 3) and various values of different p2 under
rate adaptation and constant power.
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Fig. 4. Exact and approximated capacity per unit bandwidth for
a Rayleigh fading with GSC diversity for (L = 4,M = 3) under
imperfect channel estimation p* = 0.9

capacity of (15) for (L = 4,M = 3) and p?> = 0.9 as well as
the corresponding approximations given in (16)-(20). It can be
observed that (17) and (18) correspond to each other for SNR
> 5 dB which show a tight approximation of the exact average
capacity. Furthermore, the approximations for low SNR region
are two fold: 1) the expression in (19) becomes tight in SNRs
< -15 dB, whereas; 2) the expression in (20) becomes tight
to exact capacity between 0 and 10 dB as shown in Figure 4.
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V. CONCLUSIONS

The closed-form expressions for the channel capacity per
unit bandwidth for two different adaptation policies including
their approximations and upper bounds over a slow Rayleigh

fading channel for GSC (L,M) with estimation error is de-
rived. Furthermore, we presented an upper bound as well as
asymptotically tight | ] EEEE for ora policy for the
high and low SNR regions. The results showed that opra
outperforms ora by 1 dB difference between p?> = 0.9 and
p? = 0.1. Finally, it is worth to mention that the derived ca-
pacity expressions represent general formulas for GSC (L,M)
|
which those spacial limited cases of GSC (i.e, . = M, MRC,;
M =1, SC; p? = 1,perfect estimation; p?> = 0 no diversity)
can be derived.
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