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is a Poisson impulse train with random amplitudes {4,}. Assume the {4,} are
identically distributed random variables, with mean 4 and second moment A2,
which are statistically independent of each other and of the {r,}. Hint. Show
that

y(t) y(ty) = XEE{E h(ty — 75) h(.fz - ‘fi):l

+ A? E[Z S h(ty — 1) h(ty — 7,-)]

i i#i
3.18 Property 4 on p. 156 states that every weighted linear sum of jointly
Gaussian random varlables is a Gaussian random variable.

a. Prove the converse statement that if

k
y = Z a;zq,

=]

is a Gaussian random variable for every (nonzero) constant vector a =
(ay, ay, . . ., ay), the {z;} are jointly Gaussian. Hint. Calculate the joint charac-

teristic function of the {z,} by noting that
Mx(v) = Mv(l) Ia=v = e—-l/{avzejﬁ

and compare with Eq. 3.76 after evaluating ¢,% and 7.

b. The converse statement may be taken as an alternate definition of jointly
Gaussian random variables. Prove properties 2 and 4 (p. 156) directly from this
definition without recourse to the multivariate characteristic function. Observe
that with this alternate definition the multivariate central limit theorem can be
reduced to a single-variable theorem.
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Optimum Receiver Principles

The concepts and methods of random processes studied in Chapter 3,

together with the a posteriori probability viewpoint of communication _

discussed in Chapter 2, provide the background necessary to treat the
problem of optimum communication receiver design. In this chapter
we- apply this background to the particular communication system dia-
grammed in Fig. 4.1. Here one of a discrete set of specified waveforms

ny(t)

(;a)%sa)+nw«)

A\

—_— Transmitter — ® Receiver —>—
[mi] [si(t)] {mi]
{Plmi]}

Figure 4.1 Communication over an additive white Gaussian noise channel.

{s{0},i=0,1,..., M — 1, is transmitted over a channel disturbed by
the addition of white Gaussian noise, so that the received signal process is

r(t) = s(t) + n, (). 4.1

Which waveform is actually transmitted depends on the random
message input, m; when m = m,, the transmitted signal is s, (f). Thus

the correspondence 4
m = m,;<>s(t) = s, “4.2)

defines the transmitter. The a priori probabilities {P[m,]} specify the
input source. | .
The first part of this chapter is devoted to investigating how the received
signal () shouid be processed in order to produce an estimate, ri‘z,. <?f the
transmitter input m that is optimum in the sense that the probability of

error A
P[§] = P 5 m] (4.3)

678‘;.
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is minimum. The investigation results in the determination of the optimum
receiver structure; that is, in the specification of what operations to per-
form on r(?).

In formulating the optimum receiver design problem, we assume that
the a priori probabilities {P[m,]} and signals {s,(s)} are known. The
chapter concludes with a discussion of how the minimum achievable
probability of error depends on the choice of these a priori data. In
particular, certain signal sets of practical importance are evaluated and
compared.

In Chapter 7 we extend the results of this chapter to the design and
evaluation of optimum receivers for certain channels that disturb the
transmitted signal in ways more complicated than by the simple addition
of white Gaussian noise.

4.1 BASIC APPROACH TO OPTIMUM RECEIVER DESIGN

In Chapter 3 we have seen that the transmitted signal s(¢), the disturbing
noise n,(?), and the received signal r(2) in Fig. 4.1 are random processes.
In addition, we have seen that a random process is specified in terms of
the joint density functions that it implies. The key to analyzing com-
munication situations such as that in Fig. 4.1 is to find some way to
replace all waveforms by finite dimensional vectors, for which we can then
calculate the joint density function. We show in Section 4.3 and Appendix
4A that this replacement is permissible. As a preliminary, however, it is
convenient first to establish the operations performed by an optimum
receiver under the assumption that the replacement of waveforms b
vectors has already been accomplished. |

42 VECTOR CHANNELS

The N-dimensional vector communication system diagrammed in Fig.
4.2 is a straightforward extension of the single random variable system
discussed in Chapter 2 in connection with Fig. 2.34. The transmitter is
defined by a set of M signal vectors, {s;,}. When m = m,, the vector s, is
transmitted,

si= (sil’ Siz,...,S,-N); i= 0, l,... ,M"" 1. (4.4a)
The vector channel disturbs the transmission and emits a random vector
r=(r,ry...,ry). (4.4b)

We consider a vector channel to be defined mathematically if and only if
the entire set of M conditional density functions {p,( |s = s,.)_} is known.
For brevity, we follow the usage of Eq. 2.104c and denote this set by p,,,.
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For our vector communication system the optimum receiver is specified
as follows: given that any particular vector, say r = p, is received,
where

e é (pl’ P25+« PN)’ (45)

the optimum receiver must determine from its knowledge of p,,, {s,}, and
{P[m,]} which one of the possible transmitter inputs {m,} has maximum a
posteriori probability. More precisely, the optimum receiver sets 71 = m,
whenever

Plm,|r=p]>Plm|r=09p]; fori=0,1,...,M—1,i# k. (4.6)

Proof that such a maximum a posteriori probability receiver is in fact
optimum follows from noting that when the receiver sets m = m,, the
Disturbance

o)

m S r m
—>»—— Transmitter o Channel > Receiver p——e—
jmi} {sil jmif

{Plmi]} Pr|s

Figure 4.2 A vector communication system.

conditional probability of a correct decision, given that r = p, is

P[C|r = p] = P[m,|r = p]. (4.7a)
The unconditional probability of correct decision can be written
Pl =] PC|r = o] p(o) de. (4.75)
Since
2{e) > 0,

it is clear that P[C] is maximized by maximizing P[C | r = p] for each
received vector p. If two or more m; yield the same a posteriori probability,
the receiver may select /2 from among them in any arbitrary way—for
instance, by choosing the one with the smallest index—without affecting
the probability of error. !

Determination of the a posteriori probabilities {P[m, | r = p]} follows .

from the mixed form of Bayes rule, Eq. 2.103a:

p:(p)
Since the event m = m, implies the event s = s,, and conversely, we have

e | m) =pdle|s=s). (4.8b)

P[m, | x = p]

6784
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Finally, since p,(p) is independent of the index i, we conclude from Egs.
4.6 and 4.8 that the optimum receiver, on observing r = e, sets m = m,,
whenever the decision function

Plm]ple|s=s); i=0,1,...,M—1, 4.9

is maximum for i = k.

A receiver that determines 7 by maximizing only the factor Plp|s=s,)
without regard to the factor P[m,] is called a maximum-likelihood receiver.
Such a receiver is often used when the a priori probabilities {P[m,]}
are not known. A maximum-likelihood receiver yields the minimum
probability of error when the transmitter inputs are all equally likely:

Decision Regions

The nature of the optimum vector receiver may be clarified by con-
sidering the two-dimensional example shown in Fig. 4.3a, wherein the
vectors are described in terms of coordinates ¢, and @,. We assume
three possible input messages, with known a priori probabilities P[m,],
P[m,], and P[m,]. The corresponding transmitted vectors are assumed to
be

S0 = (19 2)’
s, = (2, 1), (4.10)
s, = (1, =2).

If we now receive some point r = p, as shown, the receiver can calculate
P[m]p(p|s =s;) from knowledge of the functions Prjs Which define the
channel and thereby determine s#2 in accordance with the preceding
discussion.

We note that this calculation can be carried out for every point p in
the (@1, 2) plane and that each such point is thereby assigned to one and
only one of the possible inputs {m,}. Thus the decision rule of Eq. 4.9
implies a partitioning of the entire plane into disjoint regions, say {I,},
i =0, 1,2, similar in general to those shown in Fig. 4.3b. Each region
comprises all points such that whenever the received vector r is in I, the
optimum receiver sets 7z equal to m,. The correspondence

rin l, <> m=m, (4.11)

defines the optimum receiver.
The regions {I;} are called optimum decision regions and are a natural
extension of the decision intervals considered in Fig. 2.35. We note for
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future reference that the optimum receiver makes an error when m = m,
if and only if r falls outside I;.

It is clear that the concept of decision regions, which for simplicity we
have illustrated for a two-dimensional plane, extends directly to the case

@2
A
2 ———p 80
|
P oy | Y S T
™ | 1
\\\ |
. | |
1 1 M 1 .
-2 -1 1| 2 -
|
-1 |
I
l
._2.__._.._._ 52

(a)

() B
Figure 4.3 A three-signal vector communication problem: (a) three two-dimensional
signal vectors and a possible received signal p; (b) decision regions.

of an arbitrary number of possible inputs {m;} and to corresponding
signals {s;} that are defined on an arbitrary number of dimensions. The
decision function of Eq. 4.9 then implies a partitioning of an N-dimensional
received signal space into M disjoint N-dimensional decision regions {I;}.
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Additive Gaussian Noise

The actual boundaries of the decision regions in any particular case
depend by Eq. 4.9 on the a priori probabilities {P[m,]}, the signals {s},
and the definition of the channel Prs- In some instances the calculation
of these boundaries may be simple; in most it is exceedingly difficult.
Fortunately, many situations of practical interest fall into the simple
category.

To illustrate a relatively straightforward situation, consider the case in
which the channel disturbs the signal vector (as shown in Fig. 4.4) simply

n
m s r=s+n m
——>»——— Transmitter > @ 3 Receiver f—a—.
Lmi] [si} [ mi]

{Plmil]

Figure 4.4 An N-dimensional vector communication system.

by adding to it a random noise vector
n=(n,n,,...,ny). (4.12)

The random signal vector s = (s,, S5, . . . , 5y) and received vector r are
then related by

r=s+n=(s+n,8+n,...,5y + ny). (4.13)

Since Eq. 4.13 implies that r = p when s = s; if and only if n = p — s,,
the conditional density functions p,, are given by

plels=s)=plp—s;|s=s); i=0,1,...,M—1 (4.14)

We now make the often-reasonable assumption that m and s are
statistically independent (cf. Eq. 2.104):

pn|s = P (4153)
Hence
Pulp —s;|s=s)=pp—s); alli (4.15b)
The decision function of Eq. 4.9 is therefore
Plm,] p.(p — s»)- (4.16)

In order to simplify the decision function still more, we must specify
the noise density function p,. An especially simple and important case
is that in which the XV components of n are statistically independent,
zero-mean, Gaussian random variables, each with variance ¢2. From
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Eq. 3.57 we then have

— 1 13,
Pn(0) = Wexp pbyr j=loc,- . (4.17a)

The notation can be contracted by observing that the squared-length of
any vector a is defined to be the dot product of a with itself. In the familiar

case of N = 2 or 3 we have
N
e’ =a-a =2 a7, (4.17b)

I=1
where the {«;} are the Cartesian coordinates of a. For larger N length is
defined in the same way and Eq. 4.17b remains valid. Thus Eq. 4.17a can
be written

Pa(@) = ——— 1o, (4.17¢)

Substituting Eq. 4.17c in Eq. 4.16, we see that for this p, the optimum
receiver sets # = m, whenever

P[m,] e~le—sil*/2a* (4.18)

is maximum for i = k. [The factor (2m¢?) ~~/2 is independent of i and its
discard entails no loss of optimality.] Finally, we note that maximizing
the expression of Eq. 4.18 is equivalent to finding that value of i which
mimnimizes
le — s;|2 — 20%In P[m,]. : (4.19)
The decision function of Eq. 4.19 is easily visualized geometrically.
We recognize that the term |p — ;| is the square of the Euclidean
distance between the points p and s;:

~
lp — Si|2 = zl(Pj - Si)‘)z-
i=

Whenever all m; have equal a priori probability, the optimum decision
rule is to assign a received point p to m, if and only if p is closer to the
point s, than to any other possible signal. For example, consider the
two-dimensional signal set of Eq. 4.10. If all three messages are equally
probable, the decision regions are those shown in Fig. 4.5a; when the
three messages have unequal a priori probabilities, the decision regions
are modified in accordance with Eq. 4.19, as indicated in Fig. 4.5b.

Once the decision regions {/;} have been determined, an expression for
the conditional probability of correct decision follows immediately:

P[C|m;] =P[rin/; | m] =fp,(p |s =s,) dp. (4.20a)
I;

H78%
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Figure 4.5 Optimum decision regions for additive Gaussian noise: (a) the boundaries
of the {/;} are the perpendicular bisectors of the sides of the signal triangle whenever
Plm,] = P[m,] = P[m,]; (b) the boundaries of the {/;} are displaced when P[m,] >
P[mo] > Pm.].
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For additive equal-variance Gaussian noise this becomes -

P[C| m;] = f pulp — 5 dp

I;

= (27702)4\'/2
1;

1 fe—lp—sa'lz /2¢12dp .
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The over-all probability of error is

M-1
P[6]21—P[C]=1-— ZOP[m,-] P[C| m,]. (4.20c)

In Section 4.4 these expressions are evaluated for certain (important)
situations in which the decision regions are such that the integrals can be
easily calculated or approximated.

Multivector Channels

In the “diversity” communication system shown in Fig. 4.6, in which
the transmitted vector s is applied at the input of two different channels
and the receiver observes the output of both, it is natural to describe the

N Channel | T1
. No. 1 g
prl |s “
m S m
-t Transmitter > Receiver —T%——
m;
jmil fsil
{Pmal} o Channel | T2
- No. 2. -
pqp

Figure 4.6 A “diversity” vector communication system. [In many situations the
vectors s, ry, and r, all have the same number of components, but this need not be so.]

total receiver input r in terms of vectors r; and r, that are associated
with each channel individually. Thus we write

r = (r,1;) = (rins s oo s Mo Fans Tazs + -+ r21), (4.21a)

where
ry = (rus e - - -5 M) (4.21b)
r, = (rop, rags - - - 5 ra)- (4.21¢)

Given that vectors r; = p, an/d r, = p, are received, the a posteriori
probability of the ith message is

P[m,- I r = p] = P{mt l I, = P r, = 92]’ (4223)

where p 2 (o1 éz). With this notation, the optimum decision rule of
Eq. 4.9 is written: set rit = m,, if and only if

P[m,] pp I s =s;) = P[m,] Prl,r,(Pn P2 | s =s;) (4.22b)

is maximum for i = k.

6784
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The theorem of irrelevance. In many cases of practical importance a
channel presents some data at its output which an optimum receiver can
ignore. For instance, consider the arbitrary vector channel in Fig. 4.7,
in which two inputs r; and r, are available to the receiver. Let us determine
the conditions under which the receiver may disregard r, without affecting
the probability of error.

The optimum decision rule is again given by Eq. 4.22b. If we factor the
right-hand side of this equation in accordance with Bayes rule (Eq. 2.103),

ry
m s 4 ) m
——3p Transmitter o Channel rs Receiver ——)T—
> jmi
jmi} isil
{P[ml” prlyrzls

Figure 4.7 An arbitrary vector communication system described in terms of two output
vectors. ’

we see that an optimum receiver sets # = m, following the observation
I = P53, Iy = P, if and only if the decision function

P[m,] Prl(P1 l s =s,) Prz(Pz | S =S8, = p) (4.23)

is maximum for i=k. If r, when conditioned on r, is statistically
independent of s, then for every value of g,

Pr2(92| S =18,I, = @) =Pr2(92 I I = py)
= a number independent of i. (4.24)

When this is so, the knowledge that r, = p, can never enter into the
determination of which value of i maximizes the expression of Eq. 4.23;
an optimum receiver may therefore totally ignore r,. Thus we have the
important theorem of irrelevance: an optimum receiver may disregard a
vector r, if and only if

przlrl.s = pr2|r1' (4253)

Equation 4.25a is a necessary and sufficient condition for ignoring r,. A
sufficient condition is that

Prijrys = Pr, " (4.25b)

The meaning and utility of this theorem may be demonstrated by
considering three examples, each of which involves two additive noise
vectors m, and n, that are statistically independent of one another and of
s. The first example, shown in Fig. 4.8, illustrates a situation in which
Eq. 4.25b is valid: the received vector r, is just the noise n,, which is
statistically independent of both n; and s, hence of s and r, = n, + s.
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/+:
: s r=s+n
Transmitter > pX S !

N\ T

Fa)
m
Receiver f—>»——-

o= Mg
ng ——3——l

Figure 4.8 The vector r, is irrelevant because pr,jr, s = pr,.

Accordingly,
Pryjr,s = Pr, (4.26)

and r, is irrelevant, which is obviously sensible.

The second example, shown in Fig. 4.9, illustrates a situation in which
Eq. 4.25a is valid but Eq. 4.25b is not. We have two vector channels in
cascade and a receiver that has access to the intermediate output r, as well
as to the final output r,. Since r, is a corrupted version of r,, hence

Channel No. 1 Channel No.2

1 i‘—“ﬂl
m s | | i
1 m
et Transmitter ' | . ‘ —>
Ly L__J Receiver

ri=s+mn;

v

Figure 4.9 The vector r, is irrelevant because pr,jr, s = pPr,|r,-

depends on m only through r,, we feel intuitively that r, can tell us nothing
about s that is not already conveyed by r,. We prove this formally by
noting that, since r, = r; + n,, when r, is known r, depends only on the
noise n,, which is independent of s. Thus for all p, and i

Pefe] 11 = P15 =8) = po(p2 — £1) = Pr(02 | 1 = g

The condition of Eq. 4.25a is satisfied, and the theorem of irrelevance
states that r, is of no value to an optimum receiver.

The third example, shown'in Fig. 4.10, illustrates a situation in which
r, cannot be discarded by an optimum receiver. We have

P"z(p2| nL=es= si) =Pr2(92l n =P, —5§,8~ Si)
=pn2(p2 — f1+ sil n =@ —8;,8= S;)
= pu(P2 — @1 + S:),

which does depend explicitly on i. Thus Eq. 4.25 is not satisfied and r,
is not irrelevant, even though r, and s are pairwise independent. This is
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m

/erl-—:s+n1

-

s
Transmitter >

F

Receiver

ry=nj + Ny

Figure 4.10 The vector r, is not irrelevant.

clearly sensible, since (as an extreme case) knowledge of r, provides a good
estimate of my, hence of s, when p, is such that with high probabxhty n,
is very small compared to n,.

The theorem of reversibility. An important corollary of the theorem
of irrelevance is the theorem of reversibility, which states that the minimum
attainable probability of error is not affected by the introduction of a
reversible operation at the output of a channel, as in Fig. 4.11a. As
indicated in Fig. 4.11b, an operation G is reversible if the input r, can be
exactly recovered from the output r;. In such a case it is obvious that

Pryjrys = Pryjry»

so that Eq. 4.25a is satisfied, r, may be discarded, and the theorem is
proved. An alternative proof follows from noting that a receiver for r,
can be built which first recovers r,, as shown in Fig. 4.11¢, and then
operates on r, to determine #.

S r, r . m
—>»—— Channel > G > Receiver (—3»——-
(a)
l'2 l‘l - r2
—_— G S G-l f—>—
(b)
s rp r; r, Optirpum m
—>—— Channel > G > Gl > receiver >
for ry
Optimum receiver for ry
(c)

Figure 4.11 Insertion of a reversible operation, G, between channel and receiver.
The operation inverse to G is denoted G~!. For example, G might be the addition, and
G the subtraction, of a fixed vector a.
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4.3 WAVEFORM CHANNELS

The foregoing discussion of irrelevance provides the analytic tool that
is required in order to replace the waveform communication problem of
Fig. 4.1 by an equivalent vector communication problem. We therefore
return to consideration of this figure, in which the received waveform r(f)
is given by

r(t) = s(t) + n,(9) (4.27)

and n,(¢) is a zero-mean white Gaussian noise process with power density

Sw(f)=‘-—§9; - < f< oo, (4.28)

We first represent the signal process s(¢) in an equivalent vector form and
then show that the relevant noise process may also be represented by a
random vector.

Waveform Synthesis

A convenient way to synthesize the signal set {s,(£)} at the transmitter of
Fig. 4.1 is shown in Fig. 4.12. A set of N filters is used, with the impulse
response of the jth filter denoted by ¢;(r). When the transmitter input is
m,, the first filter is excited by an impulse of value s,;, the second filter by
an impulse of value s,, and so on, with the Nth filter excited by an impulse
of value s,y. The filter outputs are summed to yield s/(f). Thus the
transmitted waveform is one of the M signals

A7
S,,(t) - zs,,- (p,(t); i = 0, 1, e ey M — 1. (4.29)
i=1
Si 6(t’
> v1(t)
S 0(t)
i impulse ] e si(t)

§=0,1,+, M—1| generators

s,y O(t)

oy )
\ ./

Yo
Transmitter

Figurc 4.12 Signal synthesis. The output s(¢) depends on i through the choice of the
impulse weighting coefficients {s;;}.
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For ease of analysis we assume that the N “building-block” waveforms
{pi(0)} are orthonormal, by which we mean

% o j=1
[ vopwa={ 1= 430
foralljand ;1 < j, /< M.
We shall soon see that the error performance which can be achieved
with signal sets generated in this way is completely independent of the

] A
T “TereTeTT =3
PRGN P Py "l
SHEENE <!
%9999y 1§
1 1 1 1 1 i 1 t
Nr
ol T e
0 (a)
e1(t)
21
T

wa(t)

N\
VS

inNAAN
VAVAVAV

(b)
Figure 4.13 Examples of orthonormal waveforms: (@) orthonormal time-translated
pulses; (b) orthonormal frequency-translated pulses.

actual waveshapes chosen for the {@,(r)}; only the coefficients {s;;} and
the noise power density No/2 affect the minimum attainable P[S]: T.hus.
the {@,(r)} may be chosen for engineering convenience. In application,
one frequently encounters the set of time-translated pulses

(=gt —jr; j=1,2,...,N (4.31a)
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shown in Fig. 4.13a, where g(?) is the unit energy pulse

1
g(t) = JC’ —T<t<0, (4.31b)

0; elsewhere.

A second common example is the set of frequency-translated pulses

2 . .
—sIin 27 = t; 0<t<T .
o,(f) = J; T SI<h o2 N @)

0; elsewhere,

shown in Fig. 4.13b. It may be readily verified that both sets of waveforms
satisfy the orthonormality condition of Eq. 4.30. [The prefix ‘“ortho”
comes from “orthogonal,” meaning that the integral of ¢,(f) p(t) is
zero whenever j 5 /; the suffix “normal” means that the integral is unity
whenever j = /]

It may seem restrictive at first to consider only waveforms {s/(f)} that
are constructed in accordance with Eq. 4.29. This is not so: any set of
M finite-energy waveforms can be synthesized in this way. This and the fact
that the number of filters required to do so never exceeds M, is proved in
Appendix 4A. It follows that there is no loss of generality entailed in
considering only transmitters that operate as shown in Fig. 4.12.

Geometric Interpretation of Signals

Once a convenient set of orthonormal functions {p,(f)} has been
adopted, each of the transmitter waveforms {s,()} is completely determined
by the vector of its coefficients:

Si - (sil’ Si2’ e e ey SiA’); i - 0, 1, “ e ey M - l. (4.33)

As usual, we visualize the M vectors {s;} as defining M points in an
N-dimensional geometric space, called the signal space, with N mutually
perpendicular axes labeled @;,' @,, ..., gy. If we let ¢, denote the unit
vector along the jth-axis, j=1,2,..., N, each N-tuple in Eq. 4.33
denotes the vector

S; = SaP1 + P2+ + ;v (4.34)
The idea of visualizing transmitter signals geometrically is of funda-

mental importance. For example, Fig. 4.3 (which we have already
considered) represents a two-dimensional space with three signals: N = 2,
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‘ P2

L

® S

Figure 4.14 Four signals in a two-dimensional signal space. Each vector s, is located
a distance VE, E, from the origin.

M = 3. As another example, consider the set of two orthonormal functions

—sin 2 0<t<T
@,(1) = f sin "f" St< (4.35a)
0; elsewhere
(/2
— COs 27fyt; 0<<t<T
Pal) = | A/;"" o SES (435b)
\0; elsewhere,
where f, is an integral multiple of 1/T. If we choose
So = (0’ \/—E—:)
s; = (—VE,, 0) (4.36)
s = (0, '—\/E:)

§3 = (\/E.; 0)’

the vector diagram of Fig. 4.14 represents the set of four phase-modulated
transmitter waveforms

[3E i |
’cos2w( t+-—); 0Lt<T
s(1) = T & 4 h i=0,1,2,3, (4.37a)

0; elsewhere

where

E, =f°° sAnde; i=0,1,2,3 (4.37b)
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is the energy dissipated if s,(¢) is a voltage across a 1-ohm load. Similarly,
if @,(f) and @,(t) are two nonoverlapping unit pulses, the vectors of Eq.
4.36 and the diagram of Fig. 4.14 represent the four entirely different
waveforms shown in Fig. 4.15. The actual waveforms {s,(z)} depend on

A
1 —
g ]
2|3 !
§| 8|
I t
T 2r
\ so(t) Asi(t)
_E‘ri B 0 T i -t
2T
0 T 2T >t - ET-?
JeaAt) A 53(t)
T 21 -t %
— ES ]' >_ t
T 0 T 27

Figure 4.15 Another set of waveforms corresponding to the vector diagram of Fig.
4.14,

/
the choice of the {p,(¢)}, but their geometric representation depends only
on the {s;}.

Recovery of the Signal Vectors

So far we have considered the synthesis of the signal waveforms {s,(#)}
from corresponding signal vectors {s;}. It is also stralghtforvyard to
recover the vectors from the waveforms. We observe that by virtue of
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the orthonormality of the {p,(¢)}

fi s(t) @, (1) dt =Jj: [21 Si; qa,-(t)} o,(1) dt

N )

= zl si;if @) (1) dt
= —o0
N

=2 ;0 = Sus (4.38)
i=1

in which we use the Kronecker delta
1; = )
5, = / (4.39)
0; [ # j.

Carrying out the multiplication and integration for each ¢,(¢), 1 < I < N,
we obtain _,

S; = (Si15 Sizs « - +» Sin)-

The procedure can be implemented as shown in the block diagram of
Fig..4.16. If s(¢) is applied at the input, the output is a vector

s = (515 525+ - -5 Sy) (4.40a)
with components
S; éf s() p()dt;  j=1,2,...,N. (4.40b)
If s(¢) = s,(t), then s = s,. |
w1(t)
Integrator p—>— s1
p2(t)
s(t)
——
Integrator > s2
|
: N (t)
|

Integrator >—5N

Figure 4.16 Ixtraction of s =(s;, 83, ..., Sy) from s(¢). Each of the integrations
extends over the duration of the ¢;(t) with which it is associated.

s
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Irrelevant Data

Now suppose that the input to the bank of N multipliers and integrators
in Fig. 4.16 is not s(¢), but rather the .eceived random process r(t) of
Fig. 4.1. In this case the integrator outputs, say

Al® .
r; =f_ ) e tydt;  j=1,2,...,N, (4.41a)
are random variablest which together constitute a random vector
r 2 (rirg, .oy ry). (4.41b)
Since () = s(¢) + n,(t), we have
l‘l =S + n, (4.42)
where
n= (nl: Ray oo ey nN) (4.433)

is the random vector with components

n, = f n ) o) dt;  j=12,...,N. (4.43b)

We assume that n,(t), hence n, is statistically independent of s.

Were it not for the noise vector n, we have seen that r, would coincide
with whichever one of the {s,} was actually transmitted. When the
presence of n cannot be neglected, this, of course, is no longer true.
What is true, however, is that the vector r; in and by itself does contain
all data from r(t) that is relevant to the optimum determination of the
transmitted message. The objective of this section is to prove this
important fact. A

The first step in the proof is to note that the waveform equation
corresponding to the vector equality of Eq. 4.42 is

ri(t) éf ry @) = s(t) + n(2), (4.44a)
in which . j

O=2 5,000 (@)

n(t) = ﬁln,- P(0). (4.44c)

+ The value ry(w) assigned to any point w of the sample space on which r(¢) is de-
> o]

fined isf r(w, t) @) dt.
—o
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The next step in the proof is to note that in terms of these random
processes we may write

r(t) = ry(2) + (o), (4.45a)
where

rat) = K1) — ry(t)
= [s(t) + n,(5)] — [s(2) + n()]
= n,(f) — n(t) (4.45b)

is a random process that is independent of the signal transmitted. The
fact that ry() is not in general identically zero implies that the noise
process n,(f) cannot be represented with complete fidelity by the finite
orthonormal set {p,(1)}.

We have succeeded in Eq. 4.45a in decomposing the received waveform
r(?) into two waveforms, r,(¢) and ry(?), the first entirely specified by the
vector r, and the second independent of the transmitted signal. We now
show that the optimum receiver may disregard ry(r) and therefore base
its decision solely upon the vector r, = s + n.

Observe that any finite set of time samples taken from r«t), say

ry = (ry(t), ry(ty), . . ., ro(t)), (4.46)

depends only on n,(t). Since this is true also of n, the vectors r, and n
are jointly independent of s. As a preliminary to invoking the theorem of
irrelevance (Eq. 4.25b and Fig. 4.8), we observe in consequence that

—— Prz.n.s

Przlrl.s = Przln.s -

n,s

=Pl'2.np5

Pn Ps

Thus r, may be discarded by the optimum receiver provided that it is
also independent of n. Since a random process is completely described
by the statistical behavior of finite sets of time samples, it follows that the
entire process ry() may be discarded whenever the statistical independence
of r, and n holds true for every possible finite set of sampling instants
{t}, 1=1,2,...,q. In other words, the random process ry(f) may be
ignored if it is statistically independent of the process n().

The required proof of statistical independence rests on the fact that
both n(z) and ry(¢¥) result from linear operations—integration, addition,
and subtraction—on the Gaussian process n,(f). Thus n(t) and r(t) are
jointly Gaussian processes, so that by analogy with Eq. 3.130 any two

= Pryjnc
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random vectors obtained from n(¢) and ry(?), respectively, are statistically
independent if the covariance |

E[n(s) ro()] — Eln(s)] Elrs(s)]

vanishes for all observation instants ¢ and s. In particular, since n,(f),
hence n(s) and ry(r) as well, are zero mean, it suffices to show that

E[n(s) ry(t)] = 0; for all ¢ and s. (4.47a)
From Eq. 4.44c we have

BIn(9) 0] = E[ 02, 99|

N
=§1 (5) E[n; ry(1)], (4.47b)
so that we need prove only that
n;ro(t) = 0; for all j and ¢. (4.47¢)
In order to verify Eq. 4.47c, we note from the definitions of Eqgs. 4.43
and 4.45 that
n;ra(t) = n[n,(t) — n()] = nn, (1) — n;n(t)
) " N
= [ ROR@ e dx~ S T a0, (44sa)

-0

The integral can be evaluated with the help of Eq. 3.136b:

[ @ o de =" St — 2 gy d

-0

= "% N (t — o) pi(a) da = % @;(t). (4.48b)

—a0

Evaluation of the sum follows from the fact vthat

=] [ 5B o) o8 dudp

= g;’i _i f:o o — B) pu«) p,(B) dx df
=2 s opas =00, @)
Thus
N
gln_ﬁ',- Pi(t) = ‘-%9 @(1). (4.48d)
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Substituting Eqs. 4.48b and 4.48d into Eq. 4.48a, we have

—_ N N
n;ry(t) = —2—0 i) — —2—0 @(t) = 0; foralljand ¢, (4.48¢)

which was to be shown.

This completes the proof that the process ry(2) is statistically independent
of n(¢). We conclude that the vector r, defined by Eqgs. 4.41 does in fact
contain all data relevant to the optimum determination of m for the
communication system of Fig. 4.1.

Joint Density Function of the Relevant Noise

In addition to the result that ry(f) is irrelevant, the foregoing analysis
yields valuable information about r,. First, Eq. 4.42 establishes that the
relevant effect of the additive white Gaussian noise n,(?) is to disturb the
transmitted vector s by the addition of a random noise vector n:

r,=s+n. | (4.492)

Second, the discussion leading to Eq. 4.47 implies that n is a set of N
jointly Gaussian random variables, {n,;}, each of which has zero mean:

n;=0; j=12...,N. (4.49b)

Third, Eq. 4.48¢ establishes that the {n,} have zero covariance and equal
variance:

Xy,
an,={ 2 (4.49¢)
0; I
Thus the joint density function p,, in the notation of Eq. 4.17, is
1 et i,
a(@) = ———¢ , 4.49d)
P = i (

which implies that the {n;} are statistically independent. In particular,
we note that p, is spherically symmetric, that is, that p(a) depends on
the magnitude but not on the direction of the argument vector «.

Invariance of the Vector Channel to Choice of Orthonormal Base

Since a receiver need never consider the process ry(t) of Eq. 4.45, we
shall henceforth disregard it and designate the relevant received vector
simply by r rather than by r,. -

Once provision is made for calculating the vector r, the remaining
receiver design problem is precisely the same as the vector receiver
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problem which we have already considered in connection with Fig. 4.2
and Eqs. 4.13 and 4.17, with the variance ¢? set equal to N°j/2. The
relationship between the vector and waveform channels is illustrated in
Fig. 4.17, in which we break both the transmitter and receiver into two
parts. The “vector transmitter” accepts the input message m and generates
the vector s, whenever m = m,; the “modulator” then constructs s/¢)
from s; and the waveforms {g,(¢)}, which we call the orthonormal base.
At the receiver the “detector” operates on the received waveform r(f) and

Transmitter Optimum receiver
Al A
/ \ [/ O\
m s s(t) rt) r m
Vector Waveform Vector
Source >~ transmitter > Modulator > channel - Detector > receiver
jmil {s:} {si(t)} | fmif
N / .f
v .
Vector
channel

Figure 4.17 Reduction of waveform channel to vector channel. The modulator
converts s to s(t) by the mechanism of Fig. 4.12. The detector extracts the relevant
received vector r from r(z) by the mechanism of Fig. 4.16.

produces the relevant vector r; the “vector receiver’” then determines
which message is most probable from observation of r and knowledge of
the {s,} and {P[m,]}.

We have already noted that a particular geometric configuration of the
signal vectors {s;} may be converted to many different sets of waveforms
{s{)} by appropriate choice of the orthonormal base. In addition, we
now note that the derivation of p, relies only on the fact that the {g,()}
are orthonormal and depends in no way on the specific waveshapes of
these functions. Thus, as claimed earlier, whenever their vector rep-
resentations {s;} are the same, systems with different sets of transmitter
signals {s(f)}, i=0,1,..., M — 1, reduce to the same vector channel
and yield the same minimum probability of error, P[8]. The expression
for P[&] is given in Eq. 4.20, with o? specialized to N’y/2 in accordance
with Eq. 4.49c. L

44 RECEIVER IMPLEMENTATION

We have seen so far that the optimum receiver in Fig. 4.17 performs
two functions: first, the receiver calculates the relevant data vector

r=(r,r,...,rn); (4.50a)
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where
o0

r; = r)p,(dt; j=1,2,...,N. (4.50b)

-0

Then, in accordance with Eq. 4.19 (with ¢ = N’(/2), the receiver sets
m = m, if the decision function

Ir — s,/ — NgIn P[m,] (4.51)

is minimum for i = k. In practice, squarers are avoided by recognizing
that

N
= 1("52 — 2r;5; + 5;7) = Ir]* — 2r e s, 4 [s,f%,  (4.52a)
J=
in which
A N
) g Si = z r,S” (4‘52b)
i=1

is the dot product of the vectors r and s;. Since [r|? is independent of i,
a decision rule equivalent to Eq. 4.52 is to maximize the expression

(r-s)+c; (4.53a)
where
¢; = 3 NolnPlm] — s, i=0,1,...,M—1. (4.53b)

Correlation Receiver

When the relevant received vector r is obtained from the received
waveform by the bank of N multipliers and integrators shown in Fig. 4.16,
the receiver is called a correlation receiver. When M is not large, the

numbers

N

res;, = ;s i=01...,M—1

i=1
can be obtained from r and knowledge of the {s;} by attaching a set of
M resistor weighting networks (with weights proportional to the {s;;}) to
the integrator outputs or by other analog computer techniques. When M
is very large, digital computation of the {r-s,} becomes preferable. A
block diagram of an optimum correlation receiver is shown in Fig. 4.18.

Matched Filter Receiver

If each member of the orthonormal base {p;(¢)} is identically zero
outside some finite time interval, say 0 < ¢ < T, the use of the multipliers
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illi) co
r r.
(X )— Integrator ! J—(}E—
i(.;)._ o2(t) Weighting c
matrix
ro res;
Integrator \EJ ~
Select m
. largest
| : $ =
. rs;
I ‘pN (t) M =1 7y CM-—-1
/L i,
b Integrator o 3,
2/ - &/

Figure 4.18 Diagram of the correlation receiver. The bias terms {c;} are given by
Eq. 4.53b.

shown in Fig. 4.18 can be avoided. This is desirable, since accurate
analog multipliers are hard to build. Consider, for instance, the output
u(t) of a linear filter with impulse response 4,(t). When r(¢) is the filter
input, we have

ut) =f r(e) h(t — o) de. (4.54a)
If we now set -
hi(t) = T — 1), (4.54b)
the output is
ut) =f r(«) pAT — t + ) da. (4.54¢)
Finally, the output sampled at time ¢ = T is
u(T) = f r(e) g () do = r;, (4.54d)

where the second equality follows from Eq. 4.50b. Thus the optimum
decision rule of Eq. 4.53 can also be implemented by the receiver shown
in Fig. 4.19. | |

A filter whose impulse respdnse is a delayed, time-reversed version of a
signal @,(¢) is called matched to @) and the optimum receiver realization
of Fig. 4.19 is a matched filter receiver. The requirement that @,(¢) vanish
for ¢ > T is necessary in order that the matched filter may be physically
realizable, that is, in order that hy(¢) = 0 for t < 0.

For both the correlation and matched filter optimum receiver realizations
we note that the “bias” terms

¢; = (N In P[m;] — Is?)
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represent a priori data that are available to the receiver independent of
the received signal r(z). In the particular case in which the bias term is
the same for every i (in particular, when |s,|? is constant and Plm;] = 1/M
for all i), these bias terms do not affect the choice of index i that maximizes
the decision function of Eq. 4.53 and may therefore be deleted from the
receiver diagrams in Figs. 4.18 and 4.19 without loss of optimality.

mm N n rs Y
o(T=t) ——o0 | | p>
t) I
e . ' c1
us(t) ro Weighting | ¥'S1 .| Select
w2A(T-1) —_0\}\0"— matrix largest
| m
' ' o
| . I N :
| : | 7Sy
J=1
| | i CM~1
|
upn(t r T8y
l— o (T—t) 2209 \i\o—i"-—
Matched
filters Sampleatt= T

Figure 4.19 Diagram of the matched-filter receiver.

A simple example of a matched filter occurs when the signal to be
matched is |

—,/£C05277f,-t; 0Lt T
@) = T (4.552)
0; elsewhere,

where f; is an integral multiple of 1/27. Then
h(t) = T —1)

+A/—2-cos2vrf,-t; 0<<tLT
= T ' (4.55b)
0; elsewhere,

as shown in Fig. 4.20a. :
The voltage response of the infinite-Q parallel tuned circuit shown in

Fig. 4.20b to a unit impulse of current is

t
Jic’
where we have assumed that the initial energy storage in L and C at time
t = 0 is zero. It is clear that when 1/\/ LC = 2xnf; and 1/C = N 2/T the

0Kt < o,

h(t) = 1 cos
C
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impulse response h(f) coincides with hy(r) over the interval 0 < t < T,
although it does not do so for t > T. Thus the matched filtering operation
for ¢,(¢) can be instrumented as shown in Fig. 4.20c. The parallel switch
closing briefly at time ¢ = 0 dumps any residual energy in the filter,
ensuring that signal energy received earlier than ¢ = 0 does not contribute
to the output at time ¢ = T. The series switch closing briefly at ¢t = T
samples the filter output at the proper time. The entire cycle can be
repeated during the interval T < ¢ < 27, although care must be taken to

A ﬁPj(t) hj (t) = @j(T" t)

Qﬂ‘ N 4

;7 \ I\ ]

i\ / ! lT -

0f / \‘ NN ,l

\/3 / \J' ‘\J C= +/T/2
T

(a) CL= (_2%’7) )

+

1Y)

Sampleat¢t=T

r(t)
——— ——
+ (current)

O~

C[ose
—C () b'ftf'y / L =0 u(T)
£=0

o
L
O~

(b) ()

Figure 4.20 Integrate-and-dump filter. In application the resonant circuit may be
lossy, so long as its time constant is much greater than T.

be sure that the desired output is always sampled just before the filter is
dumped. A matched filter of this sort is called an integrate-and-dump®
circuit. Such a filter is not time invariant, but it does give the desired
impulse response as long as the timing of the switches is properly
synchronized with respect to g,(f).

Parseval relationships. The vector decision function of Eq. 4.53 can.be
interpreted directly in terms of time functions by means of the following
Parseval relationship. Consider an orthonormal set {p(1)}, j=1,2,...,
N, and any two waveforms defined by

fn < ﬁ fi @0 (4.56a)
i=1

g(t) é% g; 950, (4.56b)

=1
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with corresponding vector representations

f=(/0So- s fy) (4.57a)

g=(g182---,8n) (4.57b)
Then

2

fng @i(1) pi(t) dt

uMZ

Croswa=[" 5

Il

16| o0 e

I
M= §

i=11l=1

D IM=z iIM=

fagl il _Zf:ga = f g.
Thus the well-known Parseval equatlon62 from Fourier theory,
[Cswswa=["rn ey

where F(f) and G(f) are the Fourier transforms of /() and g(¢), can be
extended to read

I
M=

" 10 st = [[rnena=14 (4.58)
In particular, when g(¢) = f(r), we have
f “rwa=|" Erar=1ar (4.58b)

Equation 4.58a states that the “correlation” of f(f) and g(¢), defined as
the integral of their product, equals the dot product of the corresponding
vectors. Equation 4.58b states that the “energy” of f(¢), normalized to
a one-ohm load, equals the square of the length of the corresponding
vector f.

Equation 4.58b provides an immediate interpretation of the bias term
¢; in the additive white Gaussian noise decision rule of Eq. 4.53. We have

¢; = ¥(NgIn P[m;,] — E)), (4.59a)
where

E,; éf 5;5(t) dt = energy of the ith signal. (4.59b)
Moreover, from Eqgs. 4.29 and 4.50 we also have
© o N
[Croswa= f r(t)_[zs.-, «p,(t)] dt
N

= Z Sij r(t) @;(1) dt = glsi,-r, =T s,

g

do e T PRI A s o e i
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Thus, in terms of the complete received waveform r(?), the optimum
decision function of Eq. 4.53a is

fm r(t) s(t) dt + ;. (4.60)

In view of Eq. 4.60, the matched filter (or the correlation) receiver can
be instrumented directly in terms of the {s(#)}, i=0,1,..., M — 1, as
indicated in Fig. 4.21. At first glance this might appear to eliminate the
need for the weighting and summing operations in Figs. 4.18 and 4.19.

. cQ
so(T—-1) ————O\Jl\a——)—-é)___
r(t)
—>— l c1
I
s1(T-t) —0 |
Select sﬁ
: : largest
| : | )
| |
I | CM-1
I
l Sy (T = t)fp—0

Sample
att=T

Figure 4.21 An optimum receiver with M filters matched directly to the signals {s,(t)},
which are assumed to have duration 7.

Actually, of course, these operations are still being performed but now
occur within the M matched filters (or correlators). We have already
remarked (and prove in Appendix 4A) that the number, N, of orthonormal
functions required to express any set of M signals {s(?)} in the form of
Eq. 4.29 is always less than or equal to M. When M > N, a situation
often encountered in practice, it is usually much less expensive to use N
filters (or correlators) matched to the {p,()}, plus an analog or digital
computer, than it is to use M filters (or correlators) matched directly to

the {s,(0}. | ,

Signal-to-noise ratio. We may gain insight into the optimality of the
matched filtering operation by a signal-to-noise ratio analysis. Consider
the situation illustrated in Fig. 4.22, in which A(?) is an arbitrary linear
filter, T is an arbitrary observation instant, and ¢(?) is any known signal.
[In particular, we may choose ¢(f) to be one of the orthonormal base
functions.] The sampled output » may be written

r=F+4n, (4.61)
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r(t) = @(t) +ny(t) r=F+n
> h(t) -0 >
Sampleatt=T

Figure 4.22  An arbitrary filter, the output of which is sampled at ¢ = T.

where 7, the mean of r, depends on () and the noise term n depends on
n,(1). We now show that the maximum attainable sighal-to-noise power
ratio, defined as

S/N = F2ne, (4.62)

occurs when the filter is matched to ¢(¢); that is, when
h(t) = (T — ¥). ) (4.63)

In application, T is taken large enough that A(?) is realizable.

We prove that this A(f) maximizes 8/N° by invoking the Schwarz
inequality, one form of which states that for any pair of finite-energy
waveforms a(t) and b(z), |

l:f—Za(t) b(1) dt:l 2 < l:f_z a®(t) dt:' [f:o b*(t) dt:’. (4.64)

The equality obtains if and only if &(¢) = ca(f), where ¢ is any constant.
The validity of Eq. 4.64 is evident if we make an orthonormal expansion
of the waveforms a(t) and b(¢) by means of the Gram-Schmidt procedure
discussed in Appendix 4A. We then have
a(t) = a; yy(t) + az ()
b(t) = by v1(1) + by (1),
where

[[wopa=s; =12

Figure 4.23 illustrates that the angle between the two vectors

A
a = (ay, a5)

4.65
b é (bl’ b2) ( a)

is given by

” t) b(t) dt
a-b _ f-wa( . (4.65b)

~lalibl [ f_zaz(t) dt f:ob2(t) dt] 8

The second equality above rests on the Parseval relations of Eq. 4.58.
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l=:&%ﬂ )

Cos 0 =TaT = [al [b]

Figure 4.23 The angle between two vectors.

The Schwarz inequality (Eq. 4.64) results from recognizing that |cos 6] < 1.
Furthermore, |cos 6] = 1 if and only if b = ca, that is, if and only if
a(t) = c b(z).

We now apply the Schwarz inequality to the maximization of S/N’.
For the random variable r of Fig. 4.22,

F =fm o(T — «) h(x) da

and

o =0 &/ =~ 00

" = E[ "7 n(T = @) (T — B) h(o) (B) da dﬂ]

(oo [

|7 68 — o) h(a) h(B) dw dB

J—0J—

Ny
2
(* oo
No h*(«) de.
2 v —00
From Schwarz’s inequality, for any A(#) we have

) [ fw (T —) h(x) doc:r

Ar ~oo

S
N ey) f " K(o) da

f_2¢2(T — a) d“J:, lz(oc) do _ f_i‘?z(d) dao. a6

(.N’O/Z)f_ihz(oc) do Nol2

N
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Since the substitution of c(T — «) for h(x) satisfies Eq. 4.66 with the
equality, the ratio 8/ is indeed maximized when A(z) is matched to (z),
as claimed.

The frequency-domain interpretation of this result is instructive. Since
amplitude scaling affects the signal and noise in the same way, we need
consider only ¢ = 1. Then the transfer function of the matched filter is
given by

H(f) = f o(T — De 1t 4y

=f (p(a)e—i%f( T—a) do

—o0

= 1T Qr(f), (4.67a)

where the signal spectrum is
o) =101 e 2 [ gt ar, (4675
Thus -
H(f) = |D(f)| g oN+27T, (4.67¢)

In accordance with the inverse Fourier transform,

o0 = | o(nerds, (468)

we may interpret the filter input ¢(¢) to be a composite of many small
(complex) sinusoids: the sinusoid at frequency f; has amplitude |D(f;)| df
and phase 6(f,). In passing through the filter this component is multiplied
by H(f1), which changes its magnitude to |®(f)|? and its phase to |

6(f) = [0(f) + 27/, T] = —2af,T.
Thus the filter-output sinusoid at frequency f; is

|O(I df et T,

which has a maximum at ¢ = T. Since this is true for every f;, all of the
frequency components of ¢(f) are brought into phase coincidence and
reinforce each other at t = T; as shown in Fig. 4.24, an output signal
peak is produced at this instant.

Appreciation of the effect of the spectral-amplitude shaping caused by
|[H(f)| can be gained by contrasting the matched filter with an inverse
filter, which has the transfer function

e—i2rf T 1

o(f) 190

e_i[o(f)+2wf T]. (469)




o(t) ¥(t)
AT ~t) e

o(t)
A
| ¢

r I

4\/2 \/
¥
A A

/// \\\

Figure 4.24 An example illustrating that the output of the matched filter is maximum
at the instant ¢ = T,

|8(H)|

|2
y

>f

Figure 4.25 The inverse filter has high gain at frequencies for which |®(f)]| is small,
whereas the matched filter gain is proportional to |®(f)].
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The inverse filter also brings all components of ¢(t) into phase coincidence.
As shown in Fig. 4.25, however, the weaker components of ¢(f) are
accentuated by the inverse filter, whereas they are suppressed by the
matched filter. Since the noise spectrum §,(f) is flat over all frequencies,
the inverse filter exalts the out-of-band noise and the matched filter
subdues it.

Component Accuracy

So far we have presumed that the receiver knows exactly both the
transmitter signal vectors {s;} and the orthonormal base functions {p;(1)}.
In practice, of course, limitations on component accuracy render this
knowledge only approximate. Alternatively, in the interests of economy
we might wish to settle for a system that is somewhat less than optimum.

In general, calculation of the precise trade-off between error per-
formance and the precision of receiver instrumentation is both tedious
and unrewarding. It is more instructive to visualize the nature and extent
of the problem geometrically. For example, assume that there are two
equally likely transmitter signals, say

s(t) = £5,¢0,(0). (4.70a)

The corresponding vector representation is illustrated by the black dots
in Fig. 4.26. The receiver’s approximations to these signals might be

5(0) = £[5,0,(6) + Sapa(D)]- (4.70b)

©“2

_

Figure 4.26 The effect of receiver approximation.

These approximations are represented vectorially by the open dots in the
figure. The second orthonormal function @y(f) is introduced to permit
complete generality in representing the receiver’s approximation of ¢,(?).
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A receiver matched to these approximate signals would employ the
decision boundary indicated by the dotted line in Fig. 4.26, whereas an
optimum receiver would use the g,-axis as the decision boundary. It is
clear that the degradation in error performance is small as long as the
receiver’s approximations of the {s,(¢)} are sufficiently accurate that the
probability of the received vector r falling into the shaded area is small
compared with the optimum P[E]. This condition is met in general
whenever

5 — s = f_m [500) — s(OF dt

is small compared with the square of each intersignal distance, |s;, — s,/
for all i and k  i.

?

4.5 PROBABILITY OF ERROR

We have seen in Section 4.3 that the problem of communicating one
of a set of M specified signals {sf)} over a channel disturbed only by
additive white Gaussian noise always reduces to a corresponding vector
communication problem. In particular, we recall that the transmitter
signals are represented by M points {s,} in an N-dimensional space and
that the relevant noise disturbance is represented by an N-dimensional
random’ vector, n, with the spherically symmetric density function

LA
o) = —————¢ . 4.71a
Pi(®) TR (4.71a)
In accordance with the discussion leading to Eq. 4.19, the optimum
receiver divides the signal space into a set of M disjoint decision regions
{I,}; any point p is assigned to I if and only if

lp — sil2 — Noln P[m,] < |p — 82 — Ny In P[m,]; for all i # k.
: (4.71b)

The receiver output 7 is then set equal to m, whenever the received vector
r=s-4+n 4.71¢c)

lies in I,. Since the vector communication problem is invariant to the
specific orthonormal base {p(0)},j = 1,2,..., N, that relates the {s;}
and the {5,(f)}, the probability of error is independent of the waveshapes
ascribed to the {p,(1)}.

In this section we evaluate the minimum attainable error probability
(Egs. 4.20, with o2 = N[2) for certain important vector signal con-
figurations. Exceptfor M = 2, we assume that all M a priori probabilities
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{P[m,]} are equal. The assumption is justified from an operational point
of view in the discussion of “completely symmetric signals” at the end of
this chapter.

Equivalent Signal Sets

In addition to signal sets that are equivalent by virtue of the fact that
their geometrical configurations are identical, different geometrical
configurations may also be equivalent insofar as error probability is
concerned. Insight into this fact is gained by considering the geometry
of the decision regions.

Rotation and translation of coordinates. In Fig. 4.27a we show-a
signal s; and its decision region I,. Whenever s; is transmitted, a correct

®)
Figure 4.27 Equivalent decision regions. The concentric circles represent loci of
constant py.
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decision results if n + s, falls within I,. The probability of this event is
unaffected if s; and /; are translated together through signal space. This
follows, in accordance with Eqs. 4.71, from the fact that the noise n is
additive and its density function p, is independent of the signal. More-
over, since p, is spherically symmetric, as indicated by the contours of
constant probability density in the illustration, the probability that n + s,
will fall in 7; is also unaffected by a rotation of I; about s,. Thuss; and I,
may be simultaneously translated and rotated, as in Fig. 4.27b, without
affecting the conditional probability of a correct decision, P[CI m,].

Minimum-energy signals. Although the probability of a correct decision
is invariant to translation, such a transformation does affect the energy
required to transmit each signal: in general, s,/ = s; — a implies

E, éf si(t)dt = Is|* # |s, — a* = |s/|* = E}. (4.72)

)

When there is a constraint, say E,, on the peak energy permitted for
any signal, the vectors {s,} are constrained to lie within a sphere of radius
J E,, as indicated in Fig. 4.28. A somewhat weiker constraint is that the
mean energy E,,, defined as '

— 1
AMI M

E,= 3 P[m]E;= 3 P[m]ls/’, (4.73)

i=0 i=0
be less than some fixed value. For a given configuration of signal points
the mean energy can be minimized, without affecting the probability of

1

Figure 4.28 Peak energy constraint.
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error, by subtracting from each signal s, a constant vector a so chosen

that
M-1

2. Plm][s; — a|*

=20

is minimum:.
How to choose a is obvious once we have recognized that the expression

for E,, is precisely the expression for the moment of inertia around the
origin of a system of M point masses, where the mass of the ith point is
P[m,] and its position is s,. Since the moment of inertia is minimum when
taken around the centroid (center of gravity) of a system, it follows that
a should be chosen in such a way that the resulting centroid coincides
with the origin. Given a set of probabilities {P[m,]} and a set of signals
{s.}, the appropriate choice of a is therefore

A1
a= 3 P[m]s, 2 E[s]. (4.742)

t=0

As proof, we note that for any other translation, say b, we have

Efls — b|*] = E[|(s — a) + (a — b)[?]
= E[ls — a[?] + 2(a — b) - (E[s] — a) + |a — bj2 (4.74b)
= E[|s — a|?] + |]a — b}?,

where the last equality follows from Eq. 4.74a. The mean energy is
increased when b 5 a. If the mean energy still exceeds the allowable
maximum after the translation a is made, further reduction is possible
only by transformations such as radial scaling that do affect the probability
of error. /

Rectangular Signal Sets

When the geometric configuration of M equally likely signal vectors
is rectangular, the calculation of the error probability is especially easy.
The simplest situation is that in which there are only two signals.

Binary signals. The general case of two signal vectors, each with
probability 4, is shown in Fig. 4.29a. From the standpoint of error
probability, an equivalent signal set is that shown in Fig. 4.295, in which -
the signal configuration has been rotated and translated in such a way
that the centroid coincides with the origin and the vector (s,-— s,) lies
along the ¢, axis.

The optimum decision regions for Fig. 4.295 are determined by the
expression

min {jp — s,/* — N, In P[m,]}. (4.75)
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For equal a priori probabilities, this decision rule is just

min |p — s,|%
It is clear from Fig. 4.29b that the locus of all points p equally distant
from s, and s, is the @, axis. Thus an error occurs when s, is transmitted

»2
A
Soe,
AY
\
A\
Nd
\
\
A\ > ¢1
\
N
81
(a)
2]
Boundary between
) decision regions
: when P{mg) = P[my]
|
|
|
ny i
£ 1 — ©1
S1TaR ajz_ =
I Iy
(b)

Figure 4.29 Binary signal sets for which P[] is the same. The signals in () are called
“antipodal”; each has energy E, = (d/2)%

if and only if the noise component n, exceeds d/2, where d is the distance
between the two signals:

. d
P[5 | mi] = Plpin Iy my] = P|m > 1],
where

A2 A s, — s |2 = :b[so(t) — (O dt. (4.762)

But n, is zero-mean Gaussian with variance N°¢/2, so that

P[& ] m] =f '—1----e""'z/‘N’o da.

ar2 \J7Ng
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Setting y = « J 2/N,, we have

.P[8[ my] = f wm \712_?7 e gy A Q(ﬁiﬁ).

———————

VN2

Since, by symmetry, the conditional probability of error is the same for
either signal, we also have

d
J2N

The function Q( ) was defined in Eq. 2.50 and plotted in Fig. 2.36.
Equation 4.76b is the minimum error probability for any pair of
equally likely signal vectors separated by a distance d, regardless of their
actual location in signal space. When the signals have minimum energy
and are therefore antipodal as in Fig. 4.295, the length of each vector is

\/E}, so thatd = 2\/}_5_; and ~

P[§] = go P[m,] P[& | m,] = P[§ | m,] = Q( ) (4.76b)

P[8] = Q(V2E,JNy); equally likely antipodal signals.  (4.77)

On the other hand, when the signals are orthogonal, as in Fig. 4.30, we
have d = V2E, and

P[§] = O/ E[Ng); two equally likely orthogonal signals. (4.78) |

\ S~
VE,

Figure 4.30 Two orthogonal signals.

It is common engineering practice to express energy ratios in units of
decibels (db), where

E, A E,
= =10 loglo.-j—v,— .

o |db 0
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For example

E, E,

No No |ab
0.1 —10db
1.0 0db
2.0 3db
3.0 4.8 db

10.0 10 db

100.0 20 db

The probabilities of error for antipodal and orthogonal signaling are
plotted in Fig. 4.31 with E,/N’; in units of db. The figure illustrates that
antipodal signaling is 3 db more efficient than orthogonal signaling in
communicating one of two equally likely messages.

With binary signals, it is also easy to determine P[] when the a priori
probabilities are not equal. As shown in Fig. 4.32, the decision boundary
is shifted from s, toward s, by an amount

‘N’O/Z 111 P[mI]
d = Plmg]’

Equation 4.79a is derived from the decision rule of Eq. 4.75 by solving
the equation

lp — 812 — NoIn Plmy] = |p — 8o|> — N In P[m,]

A=

(4.792)

for p = (py, p,). For any value of p, we then have

dy d\
(P1+5)-Noln Pim,] = (Pl'—E)'—‘N)O In P[m,]. .

Since A is the value of p, satisfying this equation,

© 2Ad = Ny In 2l

P[m,) .
The resulting error probability is
- /
d—2A d+2A
P[6] = P[m (———_—:> + P[m ]Q( ) (4.79b)
[8] = P[m,] Q N [my NP

Rectangular decision regions. The ease of calculating the error proba-
bility for binary signals is directly attributable to the fact that an error
occurs if and only if one random variable exceeds a given magnitude.
A situation that is only slightly more complicated exists whenever the
decision region boundaries are rectangular. Consider, for example, the

6789
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Figure 4.31 Probability of error for bin
with equally likely messages.

ary antipodal and binary orthogonal signaling

')
Boundary between
decision regions
I I
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\ = Mo/2 . P[m]
A= 7aIn o)

Figure 4.32 Decision regions for antipodal signals with distance d and unequal a

priori probabilities.
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signal s; and decision region I; shown in Fig. 4.33a. After translating s,
to the origin and rotating the configuration as shown in Fig. 4.335, we
see immediately that s; 4 n falls within I; whenever, simultaneously,

(@, <ny <b) and (a, < ny, < b,). (4.80a)

But n, and n, are statistically independent (cf. Eq. 4.49), and the density

©2 Y2
A A
b
I;
> P1 ht Si 2 > ¢1
ag
(a) (®)
Figure 4.33 A single rectangular decision region.
function, say p,, of each is the same:
1 v, :
= p.(a) = e’ ; =1, 2. 4.80b
Pnf®) = Pa(e) o, J (4.80b)
Thus
P[C' m;] = Pla; < n; < by, a; < ny < by
= Pla; < n; < b;] Pla; < ny < by]
by ba
=f () dc:j pa(e) de. (4.80c)
ai as

The optimum decision boundaries are always rectangular when the
signal vector configuration is rectangular and all signals are equally
likely. A simple example is the rectangular configuration of six equally
likely signals shown in Fig. 4.34. We have

are

d/2
peimi = p@ds| p@de=-ps  @s1)

where p = Q(d[v/2XN,) is the probability of error for two signals separated
by a distance d. From symmetry,

P[C | mo] = P[C|ny] = P[C|m,] = P[C | ms]. (4.81b)
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Similarly,

da/2

pol) da f pa(a) da
e Jean

= (1 = 2p)(1 — p). | (4.81c)

P[C | m,] = P[C]my] =f

Thus
P[C] = EOP[CI m;] P[m,]

=$#1 —p’ + 31 — 2p)(1 — p). (4.81d)

> ¢1

Figure 4.34 Rectangular decision regions.

Vertices of a hypercube. A special case of rectangular decision regions
occurs when M = 2% equally likely messages are located on the vertices
of an N-dimensional hypercube centered on the origin. This configuration
is shown geometrically in Fig. 4.35 for N = 2 and 3. Analytically, we -
have

Si = (Sﬂ, Si2’ o .0y StN); i == 0, 1, .« o0y 2N — 1, (4.823.)
where
+ dJ2
s;; = { or foralli,j. (4.82b)
—df2
To evaluate the error probability, assume that the signal
A d d d)
=|l—=,—=,..., == 4.83
> ( 2’ 2 2 (483

is transmitted. We first claim that no error is made if

n; < g ; forallj=1,2,...,N. (4.84a)
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Figure 4.35 Signals on the vertices of two- and three-dimensional cubes: (a) N = 2;
(b) N = 3. The decision regions I, are shaded.

The proof is immediate. When r = p is received the jth component of

p—s;is
'k (p; — si5) = y (4.84b)
Since Eq. 4.84a implies
it follows that ‘ /
N N \
lo — s> =2 (p; — i) > 2”52 = lp — Sol (4.84d)
j=1 j=1

for all s, # s, whenever Eq. 4.84a is satisfied.
We next claim that an error is made if, for at least one j,

n, > g ' (4.85)
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This follows from the fact that p is closer to s; than to s, whenever Eq.
4.85 is satisfied, where s, denotes that signal with components +d/2 in
the jth direction and —dJ2 in all other directions, (Of course, p may be
still closer to some signal other than s;» but it cannot be closest to s,.)

Equations 4.84d and 4.85 together imply that a correct decision is made
if and only if Eq. 4.84a is satisfied. The probability of this event, given
that m = m,, is therefore

P[C|m0]=Pl:alln,-<§; j=1,2,...,N:,

N d
j=1

2
- (1 -~ fd Z P, (@) doc)N
in which, =1 =p%
r=of J%,_) (4.86)

is again the probability of error for two equally likely signals separated
by distance d. Finally, from symmetry

P[C|m,] =P[C|m,); for all i, (4.87a)
hence
P[C] = (1 — p)V. (4.87b)

In order to express this result in terms of signal energy, we again
recognize that the distance squared from the origin to each signal s, is the
same. The transmitted energy is therefore independent of i, hence may be
designated E,. From Egs. 4.58b and 4.82b we have

2 _ % 2_..Néf_.E 4.88
s —-j):ls,-,- NG T b (4.88a)
a=2[2,  (4.38b)

and

p=Q(A/]—V5§:). (4.89)

0

The simple form of the result P[C] = (1 — p)¥ suggests that a more
immediate derivation may exist. Indeed one does. Note that the Jjth
coordinate of the random signal s is a priori equally likely to be +dJ2
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or —dJ2, independent of all other coordinates, Moreover, the noise »,
disturbing the jth coordinate is independent of the noise in all other
coordinates. Hence, by the theorem on irrelevance, a decision may be
made on the jth coordinate without examining any other coordinate.
This single-coordinate decision corresponds to the problem of binary
signals separated by distance d, for which the probability of correct decision
is1 — p. Since in the original hypercube problem a correct decision is made
if and only if a correct decision is made on every coordinate, and since
these decisions are independent, it follows immediately that

P[C] = (1 — p)?. (4.90)

Orthogonal and Related Signal Sets

Another class of equally likely signals for which the minimum attainable
error probability is quite easy to calculate is the set of M equal-energy
orthogonal vectors. Closely related to them are the simplex and bi-
orthogonal signal sets. In treating these sets it is convenient to index the
orthonormal axes {,} from j = 0 to N — 1 rather than from j = 1 to N,
where N is the dimensionality of the signal space.

Orthogonal signals. When M equally likely and equal-energy signals
are mutually orthogonal, so that N = M and |

foo si(t) sk(t) dt = Si ¢ Sk = Es 61k; i, k = 0, 1, e ey M - 1, (4.91)

the optimum decision region boundaries are no longer rectangular and
are difficult to visualize. It is easier to proceed analytically. Letting <,
denote the unit vector along the jth coordinate axis and

s;=VE,@;  j=0,1,...,M—1, (4.92a)
we note that the squared distance from s; to the received vector r is
Ir = sl* = Ir* + s, — 2r - VE, )
= [t]* + E, — 2V, (4.92b)

where r; is the jth component of r.
When s, is transmitted, it follows that

Ir — 52 < |r — s,]%; alli # k (4.93a)
if and only if . .
~2rJE, < —=2rJE,,

ie.
ri<r; allisk. (4.93b)
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As shown in Fig. 4.36, when s, is transmitted we have

ro = ny, + \/Es- (4.94a)

r; = ng; i>0. (4.94b)
Thus

P[C|my,ro=a] =Pln, < oa,ny < &, ... 05 4 < &
= (P[n, < a])¥-1, (4.95a)

in which the last equality stems from the fact that all »; are statistically

®1

(0o = 91, 2 =0)
/

y; > ©0

\ (o= 02, 01=0)
w2
Figure 4.36 Three orthogonal signals. When s, is transmitted, a correct decision is

made if and only if n, and , are both less than « = V'E, + n,. The heavy dashed lines
are the intersections of the decision boundaries with the planes ¢, = 0 and ¢, = 0.

independent and identically distributed. Multiplying by
Pr(® = pulo = VE) ~ (495b)
and integrating yields, for M equally likely equal-energy signals,

el md = [ e~ VEYa| [ pras]” . ase
with

pale) & —L 10 (4.96b)

- /W;N-’o
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From symmetry,
P[C|m,;] = P[C| m,] = P[C], (4.96c¢)
so that Eq. 4.96a is also the expression for the unconditional probability

of a correct decision.

The integral in Eq. 4.96a cannot be simplified further but has been
tabulated® as a function of M and E JN,; a plot of P[§] = 1 — P[C]
is provided in Fig. 4.37.

Simplex signals. A useful application of the energy minimization ideas
discussed earlier is to M equally likely orthogonal signals. From Egs.

1.0

0.1

0.01

Error probability

1073

1074

1073 '

16 db

10 log,, Es/No
Figure 4.37 Error probability for M orthogonal signals.
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4.74a and 4.92a the minimizing translation is

1 M-1 \/E‘ M-1

a = E[s] = — s; = ” 4.97
ls] M ig) M igo(P ( 2)

The resulting signal set

{s,'} = {s; — a}; i=01...,M—1 (4.97b)
is called a simplex and is the optimum®2 (minimum P[§] set of M signals
for use in white Gaussian noise when energy is constrained and
P[m;] = 1/M for all i. The simplex signals for M = 2, 3, and 4 are
shown in Fig. 4.38. Since

M-1 M-1 N
>s/=2s,—Ma=0, (4.98)
i=0 i=0
‘ S A®1
/ | %\
\ 1 %g
Es Es
E | \F
/ A \{/ A PN 0 S (p
s 0 s ¥ N — So 0
£,
6
(a) M=2
(binary antipodal) Goy \?E,
S2
“ (b) M=3:
S] (equilateral triangle)

§3 (c) M=4
(regular tetrahedron)

Figure 4.38 Simplex signals. All s; are at distance v E(1 — 1/M) from the origin.
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any one of the {s;"} can be expressed as a linear combination of the others.
The M simplex signals therefore span a space of N = M — 1 dimensions. ]
By virtue of the orthonormality of the {¢p,}, for all i, k |

’

i *Se = (s; —a)-(s, — a)

=(s;*8) —a-(s, +s)+ |a|2

S

E E
=E, 0; —2—+4 =
"M M
1 )
Es(l——); fori=k !
M H
= E (4.99)
— = otherwise.
M

We see that each signal in a simplex has the same energy, which is reduced
by the factor (1 — 1/M) from that required for the orthogonal signals,
with no change in error probability. (Translations do not effect P[E].)
When M = 2, the saving is 3 db; for large M the saving is negligible.
Equation 4.99 may be used as the definition of a simplex. We note
that a set of M vectors {s,'} satisfying Eq. 4.99 may be transformed to a

set of orthogonal vectors by adding a vector N E,/M ¢ to each s,’, where
Y is any unit vector orthogonal to all of the {s,’}.

Biorthogonal signals. The final specific signal configuration considered
here is the biorthogonal set, illustrated for N = 2 and 3 in Fig. 4.39.
This signal set can be obtained from an original orthogonal set of N
signals by augmenting it with the negative of each signal. Obviously,

for the biorthogonal set
M = 2N. (4.100)

*8] L ]

> P0

_:so 80

|
&
Qe

!
|
s, |
® -8 o + -8
(a) ()

Figure 4.39 Biorthogonal signals, all at distance V'E, from origin.
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We denote the additional signals by —s; j=0,1,..., N—1, and
assume each signal has energy E..
It is clear from Fig. 4.40 that the received message point is closer to s,
than to —s, if and only if
ro > 0. © (4.101a)

Also, r is closer to s, than to s; if and only if
ro > 1y; i >0, (4.101b)
and r is closer 1o s, than to —s; if and only if

re> —ry;;  i>0. (4.101¢)

¢ —S; N

Neo= — i

Figure 4.40 Biorthogonal signals. When s, is transmitted, r is closer to +s; than itis
to s, if and only if ny and #; are such that one of the two heavy dashed lines is crossed.

It follows that the conditional probability of a correct decision for equally
likely messages, given that s, is transmitted and that

ro=n,+ VE, = a >0, (4.1022)
is just
P[Gl My, o = & > 0]
=P[—a<m<a —a<n<a..., —a<ny <o

= {P[—a < n < a]}¥*
— [ J:_:pn(ﬂ) dﬁ:‘ A (4.102b)
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The notation is that of Eq. 4.96b. Multiplying by p, («) = p.(x — VE,)

and integrating over « from 0 to oo (because of the condition of Eq.
4.102a), we obtain

P ml = “pue = VEVaol [ pupras] . aron

Once again, by virtue of symmetry and the equal a priori probability of
the {m,}, Eq. 4.103 is also the expression for P[C]. Noting that N — 1 =
(M/2) — 1, we havet

P[C] = fo “pa(x — JE) da[l — 2 f " () dﬂ]%{ " (4.104)

The difference in error performance for M biorthogonal and M or-
thogonal signals is negligible when M and E /N, are large, but the number
of dimensions required is reduced by one half in the biorthogonal case.

Completely Symmetric Signal Sets and A Priori Knowlédge

In almost all of the specific cases we have considered—in particular,
the binary, orthogonal, simplex, biorthogonal, and vertices-of-a-hypercube
signal sets—the error probability calculation is greatly simplified by the
“complete symmetry” of the geometrical configuration of the {s,}. By
complete symmetry we mean that any relabeling of the signal points can
be undone by a rotation of coordinates, translation, and/or inversion of
axes. As a counterexample, the signals of Fig. 4.34 are not completely
symmetric. '

Given complete symmetry, the condition

Pim,] = -1\—1/1 ; for all i (4.105)

leads to congruent decision regions {I;} and thus to a conditional proba-
bility of correct decision that is independent of the particular signal

transmitted :
P[C|m;] = a constant;  for all i. (4.106a)

If such a congrucnt-decisi9n-region receiver is used with message
probabilities {P[m,]} that are not all the same, the resulting probability

of correct decision is
M-1
P[C] = 3 P[m,] P[C| m;] = P[C| m,], (4.106b)
i=0
which is unchanged from the equally likely message case. Thus the error
performance of a congruent-decision-region receiver is invariant to the

f The integral of Eq. 4.104 is tabulated and plotted in reference 36.
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actual source statistics {P[m,]}. (Of course, if the source statistics are
known in advance, the probability of correct decision can be increased by
the use of a noncongruent-decision-region receiver designed in accordance
with Eq. 4.71b.)

Invariance to message probabilities can be exploited by a communication
system designer, who seldom knows in advance the exact input statistics
of the source. If the transmitter is designed with completely symmetric
signals and an optimum receiver is designed on the assumption that all
messages are equally likely, Eqgs. 4.106 will be satisfied and the error
probability of the system can be specified independent of the message
source to which it is connected. A receiver designed to be optimum under
the assumption of equally likely messages is called a maximum likelihood
receiver. (See also the discussion following Eq. 4.9.)

Minimax receivers. The foregoing discussion provides a powerful
argument in support of a design assumption that all a priori message
probabilities are equal. Even more cogently, with completely symmetric
signals this assumption leads to a receiver design that is minimax, a term
we now define.

For a fixed transmitter and channel, the probability of error depends
only on the receiver and the message probabilities. For a given receiver
(with transmitter and channel fixed) the probability of error depends
only on the message source statistics and reaches a maximum value for
spme choice of these statistics. This maximum value of the P[§] is a
useful criterion of goodness for the receiver in the absence of a priori
knowledge of the {P[m,]}: it represents a guaranteed minimum per-
formance level beneath which the system will never operate, regardless
of the statistics of the message source to which it may be connected. With
this criterion, the receiver with the smallest maximum P[§] is most desirable.
It is called the minimax receiver.

The argument that the maximum likelihood receiver is minimax when
the {s,} are completely symmetric is very simple. First, this receiver
yields a probability of error that is independent of the actual {P[m,]}
with which it may be used. Second, by the definition of optimum, any
other receiver yields a greater probability of error when used with equally
likely signals, hence must have a larger maximum. This concludes the

proof.

Union Bound on the Probability of Error

An approximation to the P[§|m,] for any set of M equally likely
signals {s;} in white Gaussian noise is obtained by noting that an error
occurs when s, is transmitted if and only if the received vector r is closer
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to at least one signal s,, k 7 i, thanitisto s,  If §, is used to denote
the event that r is closer to s, than to s; when s, is transmitted, we have

P[Gl m] =P8, U--- U 8i,i—1 SR IR VERRRY 8] (4.107)

From Eq. 2.10 the probability of a finite union of events is bounded above
by the sum of the probabilities of the constituent events, a result made
geometrically evident in Fig. 4.41. Thus

M-1
P[§| m] < kgop[ai,,]. (4.108)

Note that P[&,] is not in general equal to P[m = m, | m,], because the
latter is the probability that r = s; + n is closer to s; than to every other

(dotted tine) .
Figure 441 Venndiagram. Itis apparent that P[4 U B U C] < P[4] + P[B] + P[C].

signal vector. To emphasize that P[8;] depends only on two vectors, s;
and s,, hereafter we write P,[s;, s;] in place of P[§,]. Equation 4.108

then becomes
M—1

P[& I m;] < z P,[s;, s;]. (4.109)
k)

We next observe that Py[s;, s;] is just the probability of error for a
system that uses the vectors s; and s, as signals to communicate one of two
equally likely messages. The/bound of Eq. 4.109, and this interpretation
of P,[s,, s,], holds for channels more general than that of additive Gaussian
noise. For the Gaussian channel, however, the expression for P,[s,, s;]
is particularly simple; from Eq. 4.76b, we have

Pols;, 8] = Q('—%’ﬁﬂ) (4.110)

The union bound of Eq. 4.109 is especially useful when the signal set
{s,} is completely symmetric, for in this case the unconditioned error
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probability P[€] equals P[&|m;] and most of the terms {P,[s;, s,]} are

1

identical. The following examples illustrate the application of the bound.

Orthogonal Signals:

P[8] = P[& | m,] < (M — DQWE,JNY). (4.111)
Biorthogonal Signals:
P[8] = P[& | m,] < (M — 2)Q(VE[No) + O(2E [N, (4.112)

In many instances the union bound is a useful approximation to the actual
P[§]. It becomes increasingly tight for fixed M as E [N, is increased.

APPENDIX 4A ORTHONORMAL EXPANSIONS
AND VECTOR REPRESENTATIONS

When one of M signals {s(r)} is communicated over an additive white
Gaussian noise channel, the vector receiver to which the optimum wave-
form receiver reduces does not depend on the specific waveshapes of the
N orthonormal base functions {p,()}. Only the vectors {s,} are important;
the particular set {p,()} used to generate the signals {s{#)} has no effect
on the decision rule (Eq. 4.53), hence on the receiver error probability.
In the design of communication systems for use in white Gaussian noise,
the problem is to choose a good set of vectors {s,} and a convenient set of
functions {g,(£)} that will propagate satisfactorily over the channel.

To prove that the transmitter structure of Fig. 4.12 and the correlation
and matched filter receivers of Figs. 4.18 and 4.19 are completely general,
we must show that any set of M finite-energy waveforms can always
be expressed as

N
s =35, 00; i=0,1,...,M—1, (4A.1a)
i=1

in which the waveforms {g,(f)} are an appropriately chosen set of ortho-
normal functions:

[[owema=t; 1<1i<n (4A.1b)

In this appendix we prove the generality of Eq. 4A.1 and discuss some of
its implications.

The Gram-Schmidt orthogonalization procedure. One convenient way
in which an appropriate orthonormal set {g,(r)} can be obtained from any




6784

ORTHONORMAL EXPANSIONS AND VECTOR REPRESENTATIONS 267

given signal set {s(f)} is by the Gram-Schmidts orthogonalization
procedure described in the following sequence of steps.

1. First consider sq(¢). If 50(r) = 0 (has zero energy), renumber the
signals. For s4(¢) # 0, set

_ so(t)
@,(8) = N (4A.22)
where
E, A f " s,2(0) dt. (4A.2b)

Then ¢,(?) is a waveform with unit energy. Since sy(f) = N, E, @,(?), the
coeflicient 55, = J E,. The associated vector s, is shown in Fig. 4A.1a.

Ao
| __S1
l .
: 512
S l 6
0 T ‘7 > 1 \ [0 7 > @1
$01 ©osn
(a) (b)
L2 L2
S S
S ____ ] S2
S
22 (! 52 > ©1 P1
e —/ N
591 ‘ / 532
(c)
£ e e
. 531
(d)

Figure 4A.1 Vectors obtained by the Gram-Schmidt procedure: M = 4, N=3.
Here s, can be expressed as a linear combination of ¢, and g@,, so that 0,(¢) = 0.
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2. Second, define the auxiliary function 6,(¢) as

0:(8) = s5,(t) — Su (D), (4A.3a)
where
5 & f " si(t) ou(0) dt. | (4A.3b)
If 6,(r) £ 0, set o
@o(1) = L0} (4A.3c)

VE

where

E, = f 0,%(2) dt. _ (4A.3d)

Then @,(¢) also has unit energy, and s,, = J 23—9: . Furthermore,
f e(t) pi(r) dt = 0, (4A.3e)

which follows from the equations

VE | o0 ety at =" 0,00 gty ar

= | 100 = 51 (e di
= [Ts0 n@ai 5[ g ar

=S — §;3 = 0.

The vector s, is shown in Fig. 4A.15 under the assumption that 6,(¢) £ 0.
If 6,(¢) = 0, proceed to (3).

3. The general step in the procedure is as follows. Assume that g—-n
orthonormal waveforms ¢,(2), @(2), . . ., @,_1(t) have been defined
through the use of s4(), 5,(9), .. ., 8,_4(¢). It is clear that (-1 <Lk,
since each new signal introduces at most one new orthonormal function.
Now consider 5,(¢) and define the auxiliary function

-1
6.(t) = si(t) — glskj @;(1), (4A.4a)
where

s =| s eOdt;  j=1,2,...,1—1. (4A.4b)

-0
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If 6,(¢) #£ O, set

pt) = o) (4A.4c)
\/Eak
where
E, & f_w 6.2(1) dt. (4A.4d)

Clearly, ¢,(f) has unit energy, and s;, = N }_2—9; . Also,

f o) e dt =0; forl<m<Il—1, (4A 4e)

which follows from the equations

(* 0

VE[” w0 muar = | 00 gt dt

- [sk(t) —l_Elsk, 99,-(0] Pm(?) dt

o —00 i=1
(* 0 -1 ©
= sk(t) (Pm(t) dt —jz Sk (Pj(t) (Pm(t) dt
o —00 =1 —0
-1
= Sgm — Eski Oim
i=1
= Sem — Sem = 05 1<mgKIl—1

The foregoing procedure can be continued until all M signals {s,(1)}
have been exhausted, as shown in Figs. 4A.lc, d. There will then have
been established N < M orthonormal waveforms {@;(¢)} with the equality
holding if and only if all M signals are linearly independent—that is, if
and only if no one signal can be expressed as a linear combination of the
others. The integer N is called the dimensionality of the signal space
defined by the {s(f)}. By the nature of the construction, it is clear that
each s(f), i=0,1,...,M — 1, can indeed be expressed as a linear
combination of the {p,(1)} and thus that Eq. 4A.1 is satisfied.

A simple example of the Gram-Schmidt procedure is provided by the
four waveforms shown in Fig. 4A.2. Starting with so(1), we have

and |

_ S8 _ so) = J12.
P =g~y J12.
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so(t) v1(t)
3

s1(t) 61(t) va(t)

w
I A
w
FTT

{
]

L—> ¢ f2(t) =0

“
4
-~
-
T T &

—> ¢ 03t)=0

Figure 4A.2 An illustration of the Gram-Schmidt procedure.

Next, introducing s,(¢), we have

su=| s @®d=JH~1-3+1)=—3

=-=a0

0,(8) = s,(1) + \/3 (1)
E,, =8, s5=./8
1

@o(t) = NG 0.(2).
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Introducing s,(t), we obtain
su={" s o dt =3,

S= | sa() o) dt = —/3,

6:(1) = sa(t) — /3 () + /2 o) = 0.

Finally, introducing s3(¢), we have

S31 =f°° s3(2) @u(1) dt = ‘—\/37

Sz = | S3(1) po(t) dt = "‘2\/5»

63(t) = s3(8) + \/§ @(t) + 2\/5 @a(t) = 0.

Thus the four signals {s/(f)} span a space of two dimensions, and the
vector representations are

so(6) = V12 ¢,(0) 5o = (+/12,0),

50 = —V3g() + V8o s = (=/3,V8),

5 = +V3e() — V2 s, = (3, =V2),

()= =3p() = VB) s = (=3, —V8),
as shown in Fig. 4A.3.

(4A.5)

P2
S &———— 2\/5
|
O\
| ©
|
836 ——— -2+2

Figure 4A.3 A vector representation of the {s;(r)} of Fig. 4A.2.
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’

Y2
So A

S2
S1

S3

Figure 4A.4 An alternative vector diagram for the {s,(t)} of Fig. 4A.2.

L ©17(t) ©2"(t) ®3"(t)

()

Figure 4A.5 A third vector representation of the signals of Fig. 4A.2
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We have shown that it is always possible to represent a finite set of
signals {s,(#)} by means of at least one finite weighted sum of orthonormal
functions {p;(r)} and therefore that the derivation of the optimum
receivers of Figs. 4.18 and 4.19 is always valid.

Note that any given set {s,()} can be expanded in many different
orthonormal sets, all of which ultimately yield the same receiver, hence
the same decisions and the same probability of error. For example, if the
Gram-Schmidt procedure for the signals of Fig. 4A.2 were carried out by
considering signals in the order 51(2), 55(1), 55(), 54(t), a different pair of
orthonormal functions ¢,'(t), ,(¢), and a different set of coefficients
{s;;'} would have been obtained. In particular, s; would lie on the ¢,’-
axis and s, would have a positive projection on the ¢,’-axis, as shown in
Fig. 4A.4. Alternatively, a set {p;"(2)} might be obtained without use of
the Gram-Schmidt procedure, although the resulting number of functions
might be larger than the dimensionality, N. Such a set is shown in Fig.
4A.5a and the corresponding vectors in Fig. 4A.5b. Note that the four
signal points remain coplanar and have the same relative positions. The
important fact is that the signal points {s,} always retain the same geo-
metrical configuration, regardless of the particular set of coordinates in
terms of which they are described.

PROBLEMS

4.1 The random variable # in Fig. P4.1a is Gaussian, with zero mean. If one of
two equally likely messages is transmitted, using the signals of Fig. P4.15, an
optimum receiver yields P{€] = 0.01.

s r=s+n 850 l 81
I~ 3 - x Ko §
&/ -2 I +2
(a) / ()
50 l 81 82 80 '81 82 83
—X X X—> 8 —_— X X X—3§
-4 |0 +4 -4 0 +4 +8
(c) (d)

Figure P4.1
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a. What is the minimum attainable probability of error, P[&]min, when the
channel of Fig. P4.1a is used with three equally likely messages and the signals
of (¢c)? With four equally likely messages and the signals of (d)?

b. How do the answers to part (a) change if it is known that # = 1 rather
than 0?

4.2 One of four equally likely messages is to be communicated over a vector
channel which adds a (different) statistically independent zero-mean Gaussian
random variable with variance Ny/2 to each transmitted vector component.
Assume that the transmitter uses the signal vectors shown in Fig. P4.2 and express
the P[&] produced by an optimum receiver in terms of the function O(x).

\
\\Circle of radius VE;
\
} o1
!

Figure P4.2

4.3 It is known that P[¢]mia = g when the two signal vectors s, and s, shown
in Fig. P4.3a are transmitted with equal probability over a channel disturbed by
additive white Gaussian noise. Compute P[&]min in terms of ¢, 6, and / when the
nine vectors indicated by x’s in Fig. P4.3b are used as signals with equal prob-
ability over the same channel.

w2
4
V2 d
A P
SN
~ N\
d - \ X
\ rd
0 s \
d \X\// \\ <//;x
\ X T
d \\ ///
(@) (6)

Figure P4.3
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4.4 One of 16 equally likely messages is to be communicated over an additive
Gaussian noise channel with 8,(f) = Ny/2. The transmitter utilizes a signal
set {s,(¢)} whose vector representation is indicated by x’s in Fig. P4.4.

a. Draw the optimum decision regions.

b. Determine P[€]mia in terms of Q(«).

c. Find a set of 16 two-dimensional signal vectors (not necessarily optimum)
such that the transmitted energy is never greater than E, but for which the
attainable P[€] is less than the answer to part (b).

©2
A
VT
dy i [ [ [
SR N S
I I
41 l | : @1
| | | |
X s e o e fam X e i e e
T
dy | | |
l | | |
Ko = = =X e fom =X = — = =X
e —
d d d
Figure P4.4
4.5 One of the two signals s, = —1, 5; = +1 is transmitted over the channel

shown in Fig. P4.5a. The two noise random variables n; and n, are statistically
independent of the transmitted signal and of each other. Their density functions
are
Pnl(“) =Pn2(°‘) = % e~lal,
a. Prove that the optimum decision regians for equally likely messages are
as shown in Fig. P4.5b. Hint. Use geometric reasoning and the fact that
lpr — 1| +1py — 1] = a + b, as shown on the next page in Fig. P4.5d.

r2

. -
1 i
1, EER | o

- +1

I I '\r
-1 +1 !

Y ¢

{s0, s1} ro

Choose Either

\\

c oice/
n2 //////}/////%

(a) ()
Figure P4.5
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re ra
)

Choose (1, 1)
51 b

45° (91»02)
- N —n >

Choose =1—
S0

(c) (d)
Figure P4.5 (Continued)

b. A receiver decides that s, was transmitted if and only if (r; + r,) > 0. Is
this receiver optimum for equally likely messages? What is its probability of
error? " '

C. Prove that the optimum decision regions are modified as indicated in
Fig. P4.5¢ when P[s,] > 1.

d. The channel may be discarded without affecting P[&]min if P[s,] > q.
Evaluate ¢.

m s rn=s+n;
- Transmitter 3> @ o
A
m=mi<—ss=g
m= m1 = 5o '; ! Opti f‘
= my<—>s =3 { ptimum

receiver
4

&5

2 L 2=n1+ng

)
(a)
n
r1+ar Threshold aﬁ\‘
2 device L
;2 /;(\ >
a

(%)
Figure P4.6
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4.6 In the communication system diagrammed in Fig. P4.6a, the transmitted
signal s and the noises #; and n, are all random voltages and all statistically
independent. Assume that

P[mO] = P[ml] = %s

sl - —So = \/ES’

e~a’l2a®,

1
P, (@) = p, (2) = 0V

a. Show that the optimum receiver can be realized as diagrammed in Fig.
P4.6b, where a is an appropriately chosen constant.

b. What is the optimum value of a?

c. What is the optimum threshold setting?

d. Express the resulting P[€] in terms of Q(«).

e. By what factor would E have to be increased to yield this same probability
of error if the receiver were restricted to observing only r,.

4.7 The voltage waveforms xz(t) and y(¢), plotted below, have the properties
that when applied across a 1-ohm resistor

T T
f x2%(t) dt =f y%(¢) dt = 16 joules.
0 0

T
f () y(t) dt = 0.
0
x(t)
A

(@) : /
A :

Figure P4.7
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These signals can be used to communicate one of two equally likely messages
over a channel perturbed by additive white Gaussian noise with power density
of 4 watts/cycle/sec (on a bilateral frequency scale).

a. Calculate the minimum attainable probability of error when the two
signals used are z(¢) and —a(¢).

b. Calculate the minimum attainable probability of error when the two
signals used are z(¢) and y(¢).

4.8 a. Calculate P[&]min when the signal sets specified by Figs. P4.8a, b, and ¢
are used to communicate one of two equally likely messages over a channel
disturbed by additive Gaussian noise with 8,(f) = 0.15.

b. Repeat part (a) for a priori message probabilities (%, ).

so(t) . s1(t)
h A

1
!

(v)
Soﬂ(f) S1(

-1 1 atd -

Niw

13

Nijw

[Si(f), the Fourier transform of s; (¢), is pure real. ]
(c)

Figure P4.8

4.9 Express P[€]min in terms of Q(«) when the signal set shown in Fig. P4.9 is
used to communicate one of eight equally likely messages over a chanuiel dis-
turbed by additive Gaussian noise with 8,(f) = N/2.
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s1(t) s2(t) | s3(t)
A A
1 1 1
] | | ]
1 2 3 ‘ 12 3 ¢ >t
s4() s5(t) s6(t)
A
1 1 1
| > > f ] ¢
1 2 3 1 2 3 1 2 3
s7(t) s0(2)
\
1 1
L1 |
1 2 3 ¢ 1 2 3 ¢
Figure P4.9

4.10 One of two equally likely messages is to be transmitted over an additive
white Gaussian noise channel with 8,(f) = 0.05 by means of binary pulse
position modulation. Specifically,

SO(t) =P(t),
sl(t) =P(t - 2)3

in which the pulse p(¢) is shown in Fig. P4.10.

a. What mathematical operations are performed by the optimum receiver?

b. What is the resulting probability of error?

c. Indicate two methods of implementing the receiver, each of which uses a
single linear filter followed by a sampler and comparison device. Method I
requires that two samples from the filter output be fed into the comparison
device. Method 1I requires that just one sample be used. For each method

/
p(t)

2t—

| t
1 2

Figure P4.10
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sketch the impulse response of the appropriate filter and its response to p(t).
Which of these methods is most easily extended to M-ary pulse position modu-
lation, where s(t) = p(t — 2/), i = 0, L...,.M-1?

d. Suggest another pair of waveforms that require the same energy as the
binary pulse-position waveforms and yield the same error probability; yield a
lower error probability.

e. Calculate the minimum attainable probability of error if

so(t) = p(t) and s,(r) = p(t — 1).
Repeat for

so(t) = p(t) and 51(1) = —p(t - 1).

4.11 One of two equally likely messages, m, or my, is to be transmitted over an
additive white Gaussian noise channel by means of the two signals

5E,
st) = f Ea cos 2nft; 0<LtLT
. O; elsewhere,
( [2E,
sy(t) = A/_—T‘—cos 2n(f; + A);  0<t<T
. 0; elsewhere,

where T = 2 msec, f; = 1 Mc, and A = 250 cps. The noise has power density
spectrum No/2. If E;/Ng = 6, calculate the probability of error to two signifi-
cant digits. Repeat for A = 500 cps.

4.12 M signals s¢(t), 5,(2), . . ., sy—1(t) exist for 0 < ¢ < T, but each is identical
to all others in the subinterval [¢,, 1,], where 0 < <ty <T.

a. Show that the optimum receiver may ignore this subinterval. Equivalently,
show that if s, s, . . ., s, ; all have the same projection in one dimension, then
this dimension may be ignored. Assume an additive white Gaussian noise
channel.

b. Does this result necessarily hold.true if the noise is Gaussian but not white ?
Explain.

4.13 Consider the multipath communication model shown in Flg P4.13aq, for
which P[m,] = §. Assume that the three paths are characterized by the following
parameters:

Constant attenuation o, = 0.2 oy, = 0.4 g = 0.6.
Constant delay 7, = 1 msec 73 = 1.5msec 73 = 2 msec.

White noise power density 8,(f) = 0.002 8,,(f) =0.006 8, (f) = 0.004.
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The three noi§e processes are Gaussian and statistically independent of each
other and the signal transmitted. The transmitter is defined by the mapping

5 : .
m = my <= s(t) =s0(t)={ cos 2r10%; 0 <t <3 x 10

; elsewhere.
m = my <> s(t) = —s4(2).
% ai % ny(t)
Delay
T | r1(t)

na2(t)

. r2 (1) ; (t)
{ } 2 5 r
mg, my
a3 ‘ ng(t)
Delay L r3(t)

m s(t)
——3— Transmitter —>

Y
x

R

N
(=)
- @
S
<

(a)
r(t) . m
—ee R (¢ > > Decision -
1(t) o?xc devica >
Sample
att=T,
(b)
ay
ri(t) Delay
At g
as .
ra(t) Delay | Decision ?
Ag % ha (t) device
Sample
a3 ‘ att=To
r3(t) Delay |
A3 j
(c)
Figure P4.13

a. Show that the optimum receiver can be realized in the form illustrated in
Fig. P4.13b. Determine h,(t), T,, and the specification of the decision device.
Suggest a reasonable implementation for 4,(¢). Calculate P[€] to two significant
digits.






