
Classical Detection 
and Estimation Theory 

2.1 INTRODUCTION 

In this chapter we develop in detail the basic ideas of classical detection and 
estimation theory. The first step is to define the various terms. 

The basic components of a simple decision-theory problem are shown in 
Fig. 2.1. The first is a Source that generates an output. In the simplest case 
this output is one of two choices. We refer to them as hypotheses and label 
them HO and H1 in the two-choice case. More generally, the output might 
be one of 44 hypotheses, which we label HO, HI, . . . , HM- 1. Some typical 
source mechanisms are the following: 

1. A digital communication system transmits information by sending 
ones and zeros. When “ one” is sent, we call it HI, and when “zero” is 
sent, we call it Ho. 

2. In a radar system we look at a particular range and azimuth and try 

Hl 
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Fig. 2.1 Components of a decision theory problem. 
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20 2 .I Introduction 

to decide whether a target is present; H1 corresponds to the presence of a 
target and HO corresponds to no target. 

3. In a medical diagnosis problem we examine an electrocardiogram. 
Here & could correspond to the patient having had a heart attack and HO 
to the absence of one. 

4. In a speaker classification problem we know the speaker is German, 
British, or American and either male or female. There are six possible 
hypotheses. 

In the cases of interest to us we do not know which hypothesis is true. 
The second component of the problem is a probabilistic iransition 

mechanism; the third is an observation space. The transition mechanism 

\- 
Transition Observation 

mechanism space 

Fig. 2.2 A simple decision problem: (a) model ; (b) probability densities. 
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can be viewed as a device that knows which hypothesis is true. Based on 
this knowledge, it generates a point in the observation space according to 
some probability law. 

A simple example to illustrate these ideas is given in Fig. 2.2. When H1 is 
true, the source generates + 1. When Ho is true, the source generates - 1. 
An independent discrete random variable n whose probability density is 
shown in Fig. 2.2b is added to the source output. The sum of the source 
output and n is the observed variable 

Und er th e two hypotheses we have 
r. 

H1:r = 1 + n, 
H,:r = -1 +n. 

The probability densities of r on the two hypotheses are 
2.2b. The observation space is one-dimensional, for any 

.otted on a 
A related 

. . 
line. 
exam 

shown in Fig. 
output can be 

(1) 

.ple is shown in Fig. 2.3~~ in which the source generates 
two numbers in sequence. A random variable nl is added to the first 
number and an independent random variable n2 is added to the second. 

Thus 
Hl:rl = 1 + nl 

r2 = 1 + n2, 

Ho:rl = -1 + nl 
(2) 

r2 = - 1 + n2. 

The joint probability density of rl and r2 when HI is true is shown in 
Fig. 2.3b. The observation space is two-dimensional and any observation 
can be represented as a point in a plane. 

In this chapter we confine our discussion to problems in which the 
observation space is finite-dimensional. In other words, the observations 
consist of a set of N numbers and can be represented as a point in an 
N-dimensional space. This is the class of problem that statisticians have 
treated for many years. For this reason we refer to it as the classical 
decision problem. 

The fourth component of the detection problem is a decision rule. After 
observing the outcome in the observation space we shall guess which 
hypothesis was true, and to accomplish this we develop a decision rule that 
assigns each point to one of the hypotheses. Suitable choices for decision 
rules will depend on several factors which we discuss in detail later. Our 
study will demonstrate how these four components fit together to form the 
total decision (or hypothesis-testing) problem. 

The classical estimation problem is closely related to the detection 
problem. We describe it in detail later. 
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r1 

r2 

l-l 

Fig. 2.3 A two-dimensional problem: (a) model; (b) probability density. 

Organization. This chapter is organized in the following manner. In 
Section 2.2 we study the binary hypothesis testing problem. Then in 
Section 2.3 we extend the results to the case of M hypotheses. In Section 
2.4 classical estimation theory is developed. 

The problems that we encounter in Sections 2.2 and 2.3 are characterized 
by the property that each source output corresponds to a different hypoth- 
esis. In Section 2.5 we shall examine the composite hypothesis testing 
problem. Here a number of source outputs are lumped together to form a 
single hypothesis. 

All of the developments through Section 2.5 deal with arbitrary prob- 
ability transition mechanisms. In Section 2.6 we consider in detail a special 
class of problems that will be useful in the sequel. We refer to it as the 
general Gaussian class. 

In many cases of practical importance we can develop the “optimum” 
decision rule according to certain criteria but cannot evaluate how well the 
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test will work. In Section 2.7 we develop bounds and approximate expres- 
sions for the performance that will be necessary for some of the later 
chapters. 

Finally, in Section 2.8 we summarize our results and indicate some of 
the topics that we have omitted. 

2.2 SIMPLE BINARY HYPOTHESIS TESTS 

As a starting point we consider the decision problem in which each of 
two source outputs corresponds to a hypothesis. Each hypothesis maps 
into a point in the observation space. We assume that the observation 
space corresponds to a set of N observations: rl, r2, r3, . . . , rN. Thus each 
set can be thought of as a point in an N-dimensional space and can be 
denoted by a vector r: 

r1 

rn r2 - [I . . . 

rN 

(3) 

The probabilistic transition mechanism generates points in accord with 
the two known conditional probability densities prlH,(RIHI) and 
prIH,,(RIHo). The object is to use this information to develop a suitable 
decision rule. To do this we must look at various criteria for making 
decisions. 

2.2.1 Decision Criteria 

In the binary hypothesis problem we know that either HO or H1 is true. 
We shall confine our discussion to decision rules that are required to make 
a choice. (An alternative procedure would be to allow decision rules with 
three outputs (a) HO true, (b) H1 true, (c) don’t know.) Thus each time the 
experiment is conducted one of four things can happen: 

1. HO true; choose HO. 
2. HO true; choose H1. 
3. H1 true; choose H1. 
4. HI true; choose Ho. 

The first and third alternatives correspond to correct choices. The second 
and fourth alternatives correspond to errors. The purpose of a decision 
criterion is to attach some relative importance to the four possible courses 
of action. It might be expected that the method of processing the received 
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data (r) would depend on the decision criterion we select. In this section 
we show that for the two criteria of most interest, the Bayes and the 
Neyman-Pearson, the operations on r are identical. 

Bayes Criterion. A Bayes test is based on two assumptions. The first is 
that the source outputs are governed by probability assignments, which are 
denoted by p1 and PO, respectively, and called the a priori probabilities. 
These probabilities represent the observer’s information about the suurce 
before the experiment is conducted. The second assumption is that a cost is 
assigned to each possible course of action. We denote the cost for the four 
courses of action as COO, CIO, Cxl, CO1, respectively. The first subscript 
indicates the hypothesis chosen and the second, the hypothesis that was 
true. Each time the experiment is conducted a certain cost will be incurred. 
We should like ta design our decision rule so that on the average the cost 
will be as small as possible. To do this we first write an expression for the 
expected value of the cost. We see that there are two probabilities that we 
must average over; the a priori probability and the probability that a 
particular course of action will be taken. Denoting the expected value of 
the cost as the risk X, we have: 

3L = COOP0 Pr (say HOI HO is true) 
+ CloPo Pr (say HII Ho is true) 
+ C& Pr (say HI 1 H1 is true) 
+ COIP1 Pr (say HoIN, is true). 

Because we have assumed that the decision rule must say either Hr. or 
HO, we can view it as a rule for dividing the total observation space 2 into 
two parts, ZO and Z1, as shown in Fig. 2.4. Whenever an observation falls 
in Zu we say Ho, and whenever an observation falls in Z1 we say HI. 

Fig. 2.4 Decision regions, 
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We can now write 
probabilities and the 

the expression for 
decision regions : 

the risk in terms of the transition 

+ CllP, s Pr,H1 (RI w dR 
Zl 

+ COlPl s pr, Hl (RI 6) tat* 
ZO 

(5) 

For an N-dimensional observation space the integrals in (5) are N-fold 
integrals. 

We shall assume throughout our work that the cost of a wrong decision 
is higher than the cost of a correct decision. In other words, 

Go ’ coo, 
co1 ’ Cll- (6) 

Now, to find the Bayes test we must choose the decision regions Z. and 
Z1 in such a manner that the risk will be minimized. Because we require 
that a decision be made, this means that we must assign each point R in 
the observation space 2 to Z. or Z1. 

Thus 
2 = z() + 21 a_ z,LJz,. (7) 

Rewriting (5), we have 

ZR = P&j 
s 

p,,Ho(RIHo) dR + poem 
s 

Pl.lH,(RIH,) dR 
ZO z-z0 

+ &Co1 s pr,zQ(RI Hl) dR + PlCll s Pr,I+(RI H,m* @) 
ZO z-z0 

Observing that 

s Pr,H,(RIH,) dR = s pr,*#qK)dR = l, 
Z Z 

(8) reduces to 

x = P&o + P&l 

+ 
s 

wl(col - GlIPr,H#wlN 
ZO 

- [POGO - C,,lpr,H,(RI ml} dR* 

(9) 

(10) 
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The first two terms represent the fixed cost. The integral represents the 
cost controlled by those points R that we assign to ZO. The assumption in 
(6) implies that the two terms inside the brackets are positive. Therefore 
all values of R where the second term is larger than the first should be 
included in Z0 because they contribute a negative amount to the integral. 
Similarly, all values of R where the first term is larger than the second 
should be excluded from Z0 (assigned to 2,) because they would contribute 
a positive amount to the integral. Values of R where the two terms are 
equal have no effect on the cost and may be assigned arbitrarily. We shall 
assume that these points are assigned to H1 and ignore them in our sub- 
sequent discussion. Thus the decision regions are defined by the statement: 
If 

assign R to Z1 and consequently say that H1 is true. Otherwise assign R 
to Z. and say Ho is true. 

Alternately, we may write 

p,,,,(RIH,) ">'~OWlO - Gd 

p,l~,(RlH,) H<o pl(col - cll)’ 

The quantity on the left is called the fikelihood ratio and denoted by A(R) 

Because it is the ratio of two functions of a random variable, it is a 
random variable. We see that regardless of the dimensionality of R, A(R) 
is a one-dimensional variable. 

The quantity on the right of (12) is the threshold of the test and is 
denoted by 7: 

TA 
pow10 - Coo) 

- p1(COl - Cd’ 
(14) 

Thus Bayes criterion leads us to a likelihood ratio test (LRT) 

We see that all the data processing is involved in computing A(R) and 
is not affected by a priori probabilities or cost assignments. This invariance 
of the data processing is of considerable practical importance. Frequently 
the costs and a priori probabilities are merely educated guesses. The result 
in (15) enables us to build the entire processor and leave 7 as a variable 
threshold to accommodate changes in our estimates of a priori probabilities 
and costs. 
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Because the natural logarithm is a monotonic function, and both sides 
of (15) are positive, an equivalent test is 

In A(R) $ In v. (16) Ho 

Two forms of a processor to implement a likelihood ratio test are 
shown in Fig. 2.5. 

Before proceeding to other criteria, we consider three simple examples. 

Example I. We assume that under HI the source output is a constant voltage m. 
Under Ho the source output is zero. Before observation the voltage is corrupted by 
an additive noise. We sample the output waveform each second and obtain N samples. 
Each noise sample is a zero-mean Gaussian random variable n with variance 02. The 
noise samples at various instants are independent random variables and are indepen- 
dent of the source output. Looking at Fig. 2.6, we see that the observations under the 
two hypotheses are 

and 

Hl:rf=m+nr i=l,2 ,..., N, 
Ho:rl = ni i= I,2 ,..., N, (17) 

1 X2 
P@) = e exp -2a2 9 

d2 7Tu ( ) (18) 

because the noise samples are Gaussian. 
The probability density of rt under each hypothesis follows easily: 

1 
ptf IZ&IHI) = Pnr(& - m) = - exp 

(R i- d2 -- 
42 

(19) 
na 2a” 

and 

prt ,H~UGIHO) = pn@V = -J+- exp ( -g2)e (20) 
7ru 

0 a 

, 
Threshold 

R Data In A (R) device Decision 
I 

* processor 
-w----e, * 

In A (R) 
4 9lnV 

Fig. 2.5 Likelihood ratio processors. 
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Source 7 
N samples 

Fig. 2.6 Model for Example 1. 

Because the nf are statistically independent, the joint probability density of the Y( 
(or, equivalently, of the vector r) is simply the product of the individual probability 
densities. Thus 

JJ~,~JRIH~) = fi +- =P (-(” 2;zm)2)9 (21) 
i=l 770 

and 

P~,HO(RIHO) = fi+ exP 
t=1 no 

(-3 

Substituting into (13), we have 

A(R) = 

N 

I-I 
1 - exp UC - mJ2 - 

i=l 42 7Tu 2a2 
N 

I-I 
i=l 

After canceling common terms and taking the logarithm, we have 

In A(R) = 5 3 Rf - $$a 
f=l 

Thus the likelihood ratio test is 

a2 t-2 5 lnrl 
f=l 20 Ho 

mN 
CR 

Nm2 H1 

(22) 

(23) 

(24) 

(25) 

or, equivalently, 

% R,: 
a2 Nm 
-lnT+-+y. 

i=l HO m 
(26) 

We see that the processor simply adds the observations and compares them with a 
threshold. 
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In this example the only way the data appear in the likelihood ratio test 
is in a sum. This is an example of a suficient statistic, which we denote by 
I(R) (or simply 1 when the argument is obvious). It is just a function of the 
received data which has the property that A(R) can be written as a function 
of 1. In other words, when making a decision, knowing the value of the 
sufficient statistic is just as good as knowing R. In Example 1, I is a linear 
function of the &. A case in which this is not true is illustrated in Example 2. 

Example 2. Several different physical situations lead to the mathematical model of 
interest in this example. The observations consist of a set of N values: rl, y2, r3, . . ., rN* 

Under both hypotheses, the 
Gaussian random variables. 

ri are 
Under 

independent, identically distributed, 
HI each rr has a variance a12. Under 

zero-mean 
Ho each ri 

has a variance o 02. Because the variables are independent, the joint density is simply 
the product of the individual densities. Therefore 

and 

Substituting (27) and (28) into (13) and taking the logarithm, we have 

(2% 

In this case the sufficient statistic is the sum of the squares of the observations 

N 

&W = 2 Ri2, 
i=l 

(30) 

and an equivalent test for aI2 > go2 is 

For al2 < uo2 the inequality is reversed because we are multiplying by a negative 
number: 

47’; (or2 < uo2). (32) 

These two examples have emphasized Gaussian variables. In the next 
example we consider a different type of distribution. 

Example 3. The Poisson distribution of events is encountered frequently as a model of 
shot noise and other diverse phenomena (e.g., [l] or [Z]). Each time the experiment is 
conducted a certain number of events occur. Our observation is just this number 
which ranges from 0 to 00 and obeys a Poisson distribution on both hypotheses; that is, 

( 1 Pr (n events) = J$J e-*1, n = 0, 1,2 . . . , i = 0, 1, (33) . 

where mr is the parameter that specifies the average number of events: 

E(n) = mf. (34) 
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It is this parameter ttlt that is different in the two hypotheses. 
emphasize this point, we have for the two Poisson distributions 

Rewriting (33) to 

W,:Pr (n events) = !$eBrni, n = 0,1,2 ,..., (35) . 

&:Pr (n events) = FeWrno, n = 0,1,2 ,.... (36) . 

Then the likelihood ratio test is 

A(n) = (37) 
Ho 

or, equivalently, 

nz 
Hl In 7 + ml - mo, 
~~ In ml - In m. 

if ml > mo, 

(38) 
HO In q + ml - m. 

n I$ ln ml - In m. ’ 
if m. > ml. 

This example illustrates how the likelihood ratio test which we originally 
wrote in terms of probability densities can be simply adapted to accom- 
modate observations that are discrete random variables. We now return 
to our general discussion of Bayes tests. 

There are several special kinds of Bayes test which are frequently used 
and which should be mentioned explicitly. 

If we assume that COO and C,, are zero and CO1 = Cl0 = 1, the expres- 
sion for the risk in (8) reduces to 

We see that (39) is just the total probability of making an error. There- 
fore for this cost assignment the Bayes test is minimizing the total 
probability of error. The test is 

Hl 
lnA(R)2ln$=lnP,- -P& In (1 

Ho 1 

When the two hypotheses are equally likely, the threshold is zero. This 
assumption is normally true in digital communication systems. These 
processors are commonly referred to as minimum probability of error 
receivers. 

A second special case of interest arises when the a priori probabilities 
are unknown. To investigate this case we look at (8) again. We observe 
that once the decision regions ZO and Z1 are chosen, the values of the 
integrals are determined. We denote these values in the following manner: 
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PF = s pr,*,(RIH,) dR, 
21 

(41) 

PM = 
s 

p,,H,(RIH,) dR = 1 - & 
20 

We see that these quantities are conditional probabilities. The subscripts 
are mnemonic and chosen from the radar problem in which hypothesis HI 
corresponds to the presence of a target and hypothesis Ho corresponds to 
its absence. PF is the probability of a false alarm (i.e., we say the target is 
present when it is not); PD is the probability of detection (i.e., we say the 
target is present when it is); PM is the probability of a miss (we say the 
target is absent when it is present). Although we are interested in a much 
larger class of problems than this notation implies, we shall use it for 
convenience. 

For any choice of decision regions the risk expression in (8) can be 
written in the notation of (41): 

3t = P&o + &Cl1 + Pl(c,l - GlmLf 
- Po(C10 - Coo)(1 - pP)* (42) 

Because 
PO = 1 - PI, (43-I 

(42) becomes 

Jw,) = Coo(l - PF) + Go& 
+ Pl[(Cll - Co()) + (Co1 - Cll)hf - (Go - coovx (44) 

Now, if all the costs and a priori probabilities are known, we can find a 
Bayes test. In Fig. 2.7a we plot the Bayes risk, X,(P,), as a function of PI. 
Observe that as PI changes the decision regions for the Bayes test change 
and therefore PF and PM change. 

Now consider the situation in which a certain PI (say PI = Pf) is 
assumed and the corresponding Bayes test designed. We now fix the 
threshold and assume that PI is allowed to change. We denote the risk for 
this fixed threshold test as &(Pr, P,). Because the threshold is fixed, Pp 
and PM are fixed, and (44) is just a straight line. Because it is a Bayes test 
for PI = PF, it touches the X,(P,) curve at that point. Looking at (14), 
we see that the threshold changes continuously with PI. Therefore, when- 
ever PI # Pr, the threshold in the Bayes test will be different. Because the 
Bayes test minimizes the risk, 

$(P?, P,) 2 Jh(P1). 
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!R 

XF Cl1 

< 

XB 

coo 

0 1 Pl 

Glo Cl1 

h-0 

Fig. 2.7 Risk curves: (n) fixed risk versus typical Bayes risk; (6) maximum value of 
X1 at PI = 0. 

If A is a continuous random variable with a probability distribution 
function that is strictly monotonic, then changing ~r;l always changes the 
risk. xB(&) is strictly concave downward and the inequality in (45) is 
strict. This case, which is one of particular interest to us, is illustrated in 
Fig. 2.7a. We see that %F(PT, P,) is tangent to %#1) at P1 = PT. These 
curves demonstrate the effect of incorrect knowledge of the a priori 
probabilities. 

An interesting problem is encountered if we assume that the a priori 
probabilities are chosen to make our performance as bad as possible. In 
other words, P1 is chosen to maximize our risk %F(Pr, PI). Three possible 
examples are given in Figs. 2.76, c, and d. In Fig. 2.76 the maximum of 
iIt, occurs at P1 = 0. To minimize the maximum risk we use a Bayes 
test designed assuming P1 = 0. In Fig. 2.7~ the maximum of XB(P1) occurs 
at P1 = 1. To minimize the maximum risk we use a Bayes test designed 
assuming P1 = 1. In Fig. 2.7d the maximum occurs inside the interval 
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[O, 11, and we choose %, to be the horizontal line. This implies that the 
coefficient of P1 in (44) must be zero: 

W 11 - Coo) + (Co1 - Cll)&l - (Go - COO)PF = 0. (46) 

A Bayes test designed to minimize the maximum possible risk is called a 
minimax test. Equation 46 is referred to as the minimax equation and is 
useful whenever the maximum of XB(P1) is interior to the interval. 

A special cost assignment that is frequently logical is 

C 00 = Cl, = 0 (47) 

(This guarantees the maximum is interior.) 
Denoting, 

co1 = CM, 
C 10 = CF. 

(48) 
the risk is, 

and the minimax equation is 

C,P, = CFpF. 

Before continuing our discussion of likelihood ratio tests we shall discuss 
a second criterion and prove that it also leads to a likelihood ratio test. 

Neyman-Pearson Tests. In many physical situations it is difficult to 
assign realistic costs or a priori probabilities. A simple procedure to by- 
pass this difficulty is to work with the conditional probabilities PF and P,. 
In general, we should like to make P, as small as possible and PD as large 
as possible. For most problems of practical importance these are con- 
flicting objectives. An obvious criterion is to constrain one of the prob- 
abilities and maximize (or minimize) the other. A specific statement of this 
criterion is the following: 

Neyman-Pearson 
maximize PD (or 

Criterion. Constrai n PF = a’ < a and design a test to 
minimize PM) under this constraint. 

The solution is obtained easily by using Lagrange multipliers. We con- 
struct the function F, 

F = PM + h[P, - a'], (50 
or 

F= 
s Pr,H,(RI w dR + h Pr,Ho(RIHo)~~ - a' I ' (52) 

20 

Clearly, if PF = a’, then minimizing F minimizes P,. 
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or 

F = X(1 - a’) + 
s 

[PrlH,(RIH,) - hp,l,,(RIH,)l at* (53) 
20 

Now observe that for any positive value of A an LRT will minimize F. 
(A negative value of h gives an LRT with the inequalities reversed.) 

This follows directly, because to minimize F we assign a point R to Z0 
only when the term in the bracket is negative. This is equivalent to the test 

PrlH,@wl) < h 

Pr,H,@lH,) ’ 
assign point to Z0 or say Ho. 

The quantity on the left is just the likelihood ratio. Thus F is minimized 
by the likelihood ratio test 

A(R)? A. 
Ho (59 

To satisfy the constraint we choose h so that PF = a’. If we denote the 
density of A when Ho is true as paI H,(A 1 H()), then we require 

PF = 
s 

Am pA,H,(nlH,) dA = a’* 

Solving (56) for A gives the threshold. The value of X given by (56) will be 
non-negative because pa 1 Ho (A I I&) is zero for negative values of h. Observe 
that decreasing h is equivalent to increasing Z1, the region where we say 
H1. Thus P, increases as h decreases. Therefore we decrease X until we 
obtain the largest possible a’ < CX. In most cases of interest to us PF is a 
continuous function of h and we have PF = a. We shall assume this con- 
tinuity in all subsequent discussions. Under this assumption the Neyman- 
Pearson criterion leads to a likelihood ratio test. On p. 41 we shall see the 
effect of the continuity assumption not being valid. 

Summary. In this section we have developed two ideas of fundamental 
importance in hypothesis testing. The first result is the demonstration that 
for a Bayes or a Neyman-Pearson criterion the optimum test consists of 
processing the observation R to find the likelihood ratio A(R) and then 
comparing A(R) to a threshold in order to make a decision. Thus, regard- 
less of the dimensionality of the observation space, the decision space is 
one-dimensional. 

The second idea is that of a sufficient statistic I(R). The idea of a sufficient 
statistic originated when we constructed the likelihood ratio and saw that 
it depended explicitly only on I(R). If we actually construct A(R) and then 
recognize I(R), the notion of a sufficient statistic is perhaps of secondary 
value. A more important case is when we can recognize I(R) directly. An 
easy way to do this is to examine the geometric interpretation of a sufEcient 
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statistic. We considered the observations rl, t2, . . . , rN as a point r in an 
N-dimensional space, and one way to describe this point is to use these 
coordinates. When we choose a sufficient statistic, we are simply describing 
the point in a coordinate system that is more useful for the decision 
problem. We denote the first coordinate in this system by I, the sufficient 
statistic, and the remaining N - 1 coordinates which will not affect our 
decision by the (N - 1).dimensional vector y. Thus 

Now the expression on the right can be written as 

(57) 

(58) 

If I is a sufficient statistic, then A(R) must reduce to A(L). This implies 
that the second terms in the numerator and denominator must be equal. 
In other words, 

py,l,Ho(YIL, H,) = PYIZ,HI(YlL HII (59 

because the density of y cannot depend on which hypothesis is true. We 
see that choosing a sufficient statistic simply amounts to picking a co- 
ordinate system in which one coordinate contains all the information 
necessary to making a decision. The other coordinates contain no informa- 
tion and can be disregarded for the purpose of making a decision. 

In Example 1 the new coordinate system could be obtained by a simple 
rotation. For example, when N = 2, 

L = -&(Rl + R2)9 

(60) 

y = L (R, - R2). 
42 

In Example 2 the new coordinate system corresponded to changing to 
polar coordinates. For N = 2 

L = RI2 + R22, 

Notice that the vector y can be chosen in order to make the demonstra- 
tion of the condition in (59) as simple as possible. The only requirement is 
that the pair (I, y) must describe any point in the observation space. We 
should also observe that the condition 
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does not imply (59) unless I and y are independent under HI and HO. 
Frequently we will choose y to obtain this independence and then use (62) 
to verify that I is a sufficient statistic. 

2.2.2 Performance : Receiver Operating Characteristic 

To complete our discussion of the simple binary problem we must 
evaluate the performance of the likelihood ratio test. For a Neyman- 
Pearson test the values of pF and p0 completely specify the test perform- 
ance. Looking at (42) we see that the Bayes risk XB follows easily if P, and 
PD are known. Thus we can concentrate our efforts on calculating pF and 
P D* 

We begin by considering Example 1 in Section 2.2.1. 

Example I. From (25) we see that an equivalent test is 

Fig. 2.8 Error probabilities: (a) PF calculation; (b) PD calculation. 



Performance: Receiver Operating Characteristic 37 

We have multiplied (25) by +Gm to normalize the next calculation. Under Ho, 
l is obtained by adding N independent zero-mean Gaussian variables with variance 
o2 and then dividing by 1/N Q. Therefore I is N(0, 1). 

Under H,, I is N(1/N m/o, 1). The probability densities on the two hypotheses are 
sketched in Fig. 2.8a. The threshold is also shown. Now, PF is simply the integral of 
pl IHO(L] Ho) to the right of the threshold. 

Thus 
1 

Y exp 
42 n 

W) 

where d n dErn/o is the distance between the means of the two densities. The 
integral in (64) is tabulated in many references (e.g., [3] or [4]). 

We generally denote 

x erf, (X) L! 
s --aD 

-!= exp (-g) dx, 
42 n 

where erf, is an abbreviation for the error function? and 

erfc, (X) 4 
f 

* 1 
- exp 

x 1/27r 

(65) 

(66) 

is its complement. In this notation 

PF = erfc+ @+!z). (67) 

Similarly, PD is the integral of pllH1 @IHI) to the right of the threshold, as shown in 
Fig. 2.8b: 

PD= ao 
s 

1 
Y exp 

(x - d)l 
(In n)/d + d/2 d2n 

-- dx 2 1 al 1 d = s - exp 
42 

dy L! erfc, (2 - & (68) 
(In n)ld -d/2 37 

In Fig. 2.9a we have plotted PD versus PF for various values of d with q as the varying 
parameter. For 7 = 0, In 7 = -00, and the processor always guesses HI. Thus PF = 1 
and PD = 1. As 7 increases, PF and PD decrease. When r) = 00, the processor always 
guesses Ho and PF = PO = 0. 

As we would expect from Fig. 2.8, the performance increases monotonically with d. 
In Fig. 2.96 we have replotted the results to give PD versus d with PF as a parameter 
on the curves. For a particular d we can obtain any point on the curve by choosing v  
appropriately (0 5 77 5 co). 

The result in Fig. 2.9a is referred to as the receiver operating characteristic (ROC). 
It completely describes the performance of the test as a function of the parameter of 
interest. 

A special case that will be important when we look at co mmunication 
the case in which we want to minimize the total probability of error 

systems 

Pr (E) a PoPF + PIPM. (694 

t The function that is usually tabulated is erf (X) = 1/2/n jt exp ( -y2) dy, which is 
related to (65) in an obvious way. 
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0.8 

t 

0.6 

PO 

/ 
I I 1 I 1 I I I I 

0.2 0.4 0.6 0.8 

pF - 

(4 

Fig. 2.9 (a) Receiver operating characteristic: Gaussian variables with unequal means. 

The threshold for this criterion was given in (40). For the special case in which 
PO = PI the threshold 7 equals one and 

Pr (c) = +(PF + PM). 

Using (67) and (68) in (69), we have 

(694 

Qo Pr (E) = 
1 

-& exp (-5) cik = erfc+ (+$ (70) + d/l 7T 

It is obvious from (70) that we could also obtain the Pr (E) from the ROC. However, 
if this is the only threshold setting of interest, it is generally easier to calculate the 
Pr (E) directly. 

Before calculating the performance of the other two examples, it is 
worthwhile to point out two simple bounds on erfc, (X). They will enable 
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us to discuss its approximate behavior analytically. For X > 0 

&X(1 - $) exp (-f) < erfc* (X) < *Xexp (-7). (71) 

This can be derived by integrating by parts. (See Problem 2.2.15 or Feller 
[3O].) A second bound is 

erfc, (X) < & exp x > 0, (72) 

0.9999 t I I 

0.999 - 

0.99 - 

0.98 - 

0.8 

0.7 

Fig. 2.9 (6) detection probability versus da 
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which can also be derived easily (see Problem 2.2.16). The four curves are 
plotted in Fig. 2.10. We note that erfc, (X) decreases exponentially. 

The receiver operating characteristics for the other two examtAes are 
also of interest. 

1.0 

0.5 

0.3 

0.1 

0.01 

0.00: 

X---t 

Fig. 2.10 Plot of erfc+ (X) and related functions. 
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Example 2. In this case the test is 

l(R) = 5 
Hl 2tJ()%p 

R,2 >< - 
i=l Ho 012 - ao2 

ins - Nlnz = y, (a1 ) 4. (73) 

The performance calculation for arbitrary N is somewhat tedious, so we defer it 
until Section 2.6. A particularly simple case appearing frequently in practice is 
N = 2. Under Ho the rl are independent zero-mean Gaussian variables with variances 
equal to ao2: 

PF = Pr (I 2 ylHo) = Pr (r12 + ra2 >, yl Ho). (74) 

To evaluate the expression on the right, we change to polar coordinates: 

Then 

rl = z cos 8, z = Al2 + r22 
(75) 

r2 = z sin 0, 8 = tan-1 2 
r1 

Pr (z2 2 ~1 Ho) = 
s s 

2n de QD 2 k2 exp (-&) dZ. (76) 
0 4 

Integrating with respect to 8, we have 

We observe that I, the sufficient statistic, equals z2. Changing variables, we have 

PF = 
f  

* 1 
2 exP 

Y 200 

(Note that the probability density of the sufficient statistic is exponential.) 
Similarly, 

PD=exp -+ 
( ) 

(78) 

(79) 

To construct the ROC we can combine (78) and (79) to eliminate the threshold y. 
This gives 

PO = (P*)Q02'"12. (80) 

In terms of logarithms 

In PO = f?! In PF. 
012 

(81) 

As expected, the performance improves monotonically as the ratio u12/uo2 increases. 
We shall study this case and its generalizations in more detail in Section 2.6 

The two Poisson distributions are the third example. 

Example 3. From (38), the likelihood ratio test is 

H1 In 7 + ml - m0 = 
n>< 

Ho h ml - h m. ” 
(ml ) mol. (82) 

Because n takes on only integer values, it is more convenient to rewrite (82) as 
HI 

n 2 YI, YI  = 0,1,2 ,..., (83) 
Ho 
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where yI takes on only integer values. Using (39, 
q-1 

pD = - e'"l 1 c 
( 1 ml n 

YI  = 0,1,2 ,..., (84) 
and from (36) 

n=O n!’ 

yl’ ’ (mo)n PF = 1 - ewmo 2 -9 
n! Yx =0,1,2 ,.... (85) 

n=O 

The resulting ROC is plotted in Fig. 2.1 la for some representative values of m. 
and ml. 

We see that it consists of a series of points and that PF goes from 1 to 1 - earn0 
when the threshold is changed from 0 to 1. Now suppose we wanted PF to have an 
intermediate value, say 1 - +e -mo. To achieve this performance we proceed in the 
following manner. Denoting the LRT with ‘ye = 0 as LRT No. 0 and the’ LRT with 
YI  = 1 as LRT No. 1, we have the following table: 

LRT YI PF PD 

1.0 

0.8 

0.6 

Fil 

0.4 

0.2 

0 

0 
1 

0 
1 

1 1 
1 - ewmo 1 - ewrni 

6” 
- 

‘; 

“8 

- 
4” 

05 - 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

0 ??a() = 2, ml = 4 

/ 0 m() = 4, ml = 10 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 1 I I I I I I I I 
0.2 0.4 0.6 0.8 

w---+ 

Fig. 2.11 (a) Receiver operating characteristic, Poisson problem. 
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Fig. 2.11 (6) Receiver operating characteristic with randomized decision rule. 

To get the desired value of PF we use LRT No. 0 with probability 3 and LRT No. 1 
with probability 3. The test is 

If  n = 0, say HI with probability 3, 
say Ho with probability 3, 

n>l say HI. 

This procedure, in which we mix two likelihood ratio tests in some probabilistic 
manner, is called a randomized decision rule. The resulting PO is simply a weighted 
combination of detection probabilities for the two tests. 

PO = 0.5(l) + 0.5(1 - ewrnl) = (1 - 0.5 e-ml). (86) 

We see that the ROC for randomized tests consists of straight lines which connect 
the points in Fig. 2.11a, as shown in Fig. 2.1lb. The reason that we encounter a 
randomized test is that the observed random variables are discrete. Therefore A(R) 
is a discrete random variable and, using an ordinary likelihood ratio test, only certain 
values of PF are possible. 
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Looking at the expression 
we have 

for PF in (56) and denoting the threshold by 7, 

If P&) is a continuous function of q, we can achieve a desired value from 
0 to 1 by a suitable choice of r) and a randomized test will never be needed. 
This is the only case of interest to us in the sequel (see Prob. 2.2.12). 

With these examples as a background, we now derive a few general 
properties of receiver operating characteristics. We confine our discussion 
to continuous likelihood ratio tests. 

Two properties of all ROC’s follow immediately from this example. 

Property 1. All continuous likelihood ratio tests have ROC’s that are con- 
cave downward. If they were not, a randomized test would be better. This 
would contradict our proof that a LRT is optimum (see Prob. 2.2.12). 

Property 2. All continuous likelihood ratio tests have ROC’s that are above 
the PD = PF line. This is just a special case of Property 1 because the points 
(P F = 0, PD =O)and(P, = 1,PD = 1) are contained on all ROC’s. 

Property 
the value 

3. The slope of a curve in a ROC at a particular point is equal to 
of the threshold r) required to achieve the PD and PF of that point. 

Jtl 

Differentiating both expressions with respect 
as a quotient, we have 

dPDld7 -P*wJrlWd - = 
@F/h -PnIHJdHo) 

We now show that 
PA,HJ?dm 
PA,I&lHO) = r)* 

Let 

to 7 and writing the results 

dP D = -. 
dP F 

(89) 

= s A(R>Pr I Ho (RI Ho) m (92) ncfl> 
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where the last equality follows from the definition of the likelihood ratio. 
Using the definition of Q(q), we can rewrite the last integral 

Ml) = s 
WQPr I H() (RI Ho) aa = 

s 
O” xP*,H()(xI~0) dX (93) 

w?) tl 
Differentiating (93) with respect to 7, we obtain 

Equating the expression for dP,(n)/dT in the numerator of (89) to the 
right side of (94) gives the desired result. 

We see that this result is consistent with Example 1. In Fig. 2.9a, the 
curves for nonzero d have zero slope at PF = PD = 1 (7 = 0) and infinite 
slope at PF = PD = 0 (q- = co). 

Property 4. Whenever the maximum value of the Bayes risk is interior to 
the interval (0, 1) on the PI axis, the minimax operating point is the 
intersection of the line 

(C 11 - Coo) + (Co1 - GA1 - PD) - Go - coo)P, = 0 (95) 

and the appropriate curve of the ROC (see 46). In Fig. 2.12 we show the 
special case defined by (50), 

CFpF = &PM = CM(1 - PD), 

0.4 0.6 

‘F - 

(96) 

Determination of minimax operating point. 
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superimposed on the ROC of Example 1. We see that it starts at the point 
P F = 0, PD = 1, and intersects the Pp = 1 line at 

This completes our discussion of the binary 
Several key ideas should be re-emphasized : 

P c F= -2. 1 C iu (97) 

hypothesis testing problem. 

1. Using either a Bayes criterion or a Neyman-Pearson criterion, we 
find that the optimum test is a likelihood ratio test. Thus, regardless of the 
dimensionality of the observation space, the test consists of comparing a 
scalar variable A(R) with a threshold. (We assume p,(q) is continuous.) 

2. In many cases construction of the LRT can be simplified if we can 
identify a sufficient statistic. Geometrically, this statistic is just that 
coordinate in a suitable coordinate system which describes the observation 
space that contains all the information necessary to make a decision. 

3. A complete description of the LRT performance was obtained 
by plotting the conditional probabilities PO and pF as the threshold 7 was 
varied. The resulting ROC could be used to calculate the Bayes risk for 
any set of costs. In many cases only one value of the threshold is of interest 
and a complete ROC is not necessary. 

A number of interesting binary tests are developed in the problems. 

2.3 M HYPOTHESES 

The next case of interest is one in which we must choose one of M 
hypotheses. In the simple binary hypothesis test there were two source 
outputs, each of which corresponded to a single hypothesis. In the simple 
M-ary test there are M source outputs, each of which corresponds to one 
of M hypotheses. As before, we assume that we are forced to make a 
decision. Thus there are M2 alternatives that may occur each time the 
experiment is conducted. The Bayes criterion assigns a cost to each of these 
alternatives, assumes a set of a priori probabilities PO, PI, . . . , PM - 1, and 
minimizes the risk. The generalization of the Neyman-Pearson criterion to 
M hypotheses is also possible. Because it is not widely used in practice, we 
shall discuss only the Bayes criterion in the text. 

Bayes Criterion. To find a Bayes test we denote the cost of each course 
of action as Ci,. The first subscript signifies that the ith hypothesis is 
chosen. The second subscript signifies that the jth hypothesis is true. We 
denote the region of the observation space in which we choose Hr as Zt 
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and the a priori probabilities are Pr. The model is shown in Fig. 2.13. The 
expression for the risk is 

Jt = yg y-g w*, fi, PrlH,@IHj) cm* (98) 
= = 

To find the optimum Bayes test we simply vary the Zr to minimize X. 
This is a straightforward extension of the technique used in the binary case. 
For simplicity of notation, we shall only consider the case in which M = 3 
in the text. 

Noting that Z. = Z - Z1 - Z2, because the regions are disjoint, we 
obtain 

Jt = P&o 
I z-z, -22 

Pr,H,(RIH,) dR + POGO 
s PrlHJRIHCJ dR 

21 

+ poc20 
s 

Pr,,,(RJH,) dR + PlCll 
22 f 

Pr,H,O dR 
z-20 -22 

+ fwo1 
s 

Pr,H,(RlH,) dR + Plczl 
ZO s 

Pr,,,(RIH,) dR 
z2 

+ p2c22 
s z-z0 ‘Zl 

pl.,H,(RIH,) dR + p2co2 Pr,H,(RIH,) dR 

+ p2c12 [ P rIH2CRlHd dR* 
JLl 

This reduces to 

+ 
s 

[P2Wo2 - CzzlPrIHJ~ 
ZO + s [PO(clO - COOIPrlHJR 
Zl 

Ho) + P&2 - C221PrIH2(R 

+ J [POW20 - coo)prlHo(R~Ho) + p1(c21 - Cd’wdR 

z2 

As before, the first three terms represent the fixed cost and the Integrals 
represent the variable cost that depends on our choice of Zo, Z1, and Z2. 
Clearly, we assign each R to the region in which the value of the integrand 
is the smallest. Labeling these integrands IO(R), I,(R), and 12(R), we have 
the following rule : 

if IO(R) < II(R) and 12(R), choose Ho, 
if II(R) c IO(R) and 12(R), choose HI, 
if I,(R) < lo(R) and I,(R), choose H2. 

ww 

(99) 
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PrlHi 

Fig. 2.13 M hypothesis problem. 

We can write these terms in terms of likelihood ratios by defining 

Using (102) in (100) and (lOl), we have 

HI or Hz 

mco1 - cll) R,(R) 5 Po(Clo - coo) + p2(c12 - Co2)AdR) (lo3) 
Ho or Hz 

Hz or HI 

p2wo2 - c22) A,(R) >< 
Ho or HI 

P&20 - Coo) + h(C21 - cod Al(R), (104) 

Hz or Ho 

P2G2 - c22) A,(R) 5 Po(C20 - Go) + p&21 - cu)AdR)- (lo% 
HI or HO 

We see that the decision rules correspond to three lines in the AI, A, 
plane. It is easy to verify that these lines intersect at a common point and 
therefore uniquely define three decision regions, as shown in Fig. 2.14. 
The decision space is two-dimensional for the three-hypothesis problem. 
It is easy to verify that M hypotheses always lead to a decision space 
which has, at most, (M - 1) dimensions. 

Several special cases will be useful in our later work. The first is defined 
by the assumptions 

C 00 = Cl1 = c22 = 0, 
C if = 1, i# j. 

These equations indicate that any error is of equal importance. Looking 
at (98), we see that this corresponds to minimizing the total probability of 
error. 
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Fig. 2.14 Decision space. 

Substituting into (103)-( 109, we have 
H1 or H2 

f2uR) >< PO9 
Ho or Hz 

H2 or HI 

&A,(R) >< PO9 
Ho or HI 

Hz or Ho 

p2MR) z mLw* 
HI or Ho 

(107) 

04 

Fig. 2.15 Decision spaces. 
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The decision regions in the &, &) plane are shown in Fig. 2.1%~. In this 
particular case, the transition to the (ln A,, In A,) plane is straight- 
forward (Fig. 2.1%). The equations are 

HI or H2 

In A,(R) z In $9 
Ho or H2 1 

HI or H2 

In A,(R) 3 In $$ 
Ho or HI 

ww 
2 

Ho or H2 

ln A,(R) 3 
Pl 

Ho or HI 
In A,(R) + In p* 

2 

The expressions in (107) and (108) are adequate, but they obscure an 
important interpretation of the processor. The desired interpretation is 
obtained by a little manipulation. 

Substituting (102) into (103-105) and multiplying both sides by 
PrI Ho(RI&), we have 

HI or Hz 

plib,H1(Ri~l) z P,h,Ho(RI&), 
Ho or Hz 

Hz or H1 

P2hI,2(RtH,) z pOp,, Ho(RIH,), 
Ho or HI 

uw 

Hz or Ho 

p2PrlH2tR1H2) z pl~r,Hl(R~H,). 
H1 or Ho 

Looking at (log), we see that an equivalent test is to compute the a 
posteriori probabilities Pr [HoI R], Pr [H, JR], and Pr [H,IR] and choose 
the largest. (Simply divide both sides of each equation by p,(R) and 
examine the resulting test.) For this reason the processor for the minimum 
probability of error criterion is frequently referred to as a maximum a 
posteriori probability computer. The generalization to M hypotheses is 
straightforward. 

The next two topics deal with degenerate tests. Both results will be useful 
in later applications. A case of interest is a degenerate one in which we 
combine H1 and Hz. Then 

c 12 = c21 = 0, (110) 

and, for simplicity, we can let 

c 01 = C 10 = C 20 = c 02 
and 

C oo= C 11= c 22= l 
0 

Then (103) and (104) both reduce to 
HI 0; Hz 

PlAl(R> + P2A2W c PO 
Ho 

and (105) becomes an identity. 

(111) 

(112) 

(113) 
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1 
A2 CR) 

PO 

pz HI or H2 5 HO 

PO 

p1 

Fig. 2.16 Decision spaces. 

The decision regions are shown in Fig. 2.16. Because we have eliminated 
all of the cost effect of a decision between HI and Hz, we have reduced it 
to a binary problem. 

We next consider the dummy hypothesis technique. A simple example 
illustrates the idea. The actual problem has two hypotheses, HI and Hz, 
but occasionally we can simplify the calculations by introducing a dummy 
hypothesis Ho which occurs with zero probability. We let 

PO = 0, PI + Ps = 1, 
and (114) 

c 12 = co29 c21 = COP 

Substituting these values into (103-109, we find that (103) and (104) 
imply that we always choose HI or Hz and the test reduces to 

P2G2 - C22) A,(R) 7 PdC21 - Gl) MW. (119 
HI 

Looking at (12) and recalling the definition of A,(R) and R,(R), we see 
that this result is exactly what we would expect. [Just divide both sides of 
(12) by ~~~ Ho(RI Ho).] On the surface this technique seems absurd, but it 
will turn out to be useful when the ratio 

Pr, HstR1 H2) 

is difficult to work with and the ratios A,(R) and A,(R) can be made 
simple by a proper choice of pFI Ho(RI Ho). 

In this section we have developed the basic results needed for the M- 
hypothesis problem. We have not considered any specific examples 
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because the details involved in constructing the likelihood ratios are the 
same as those in the binary case. Typical examples are given in the 
problems. Several important points should be emphasized. 

1. The minimum dimension of the decision space is no more than 
iv- 1. The boundaries of the decision regions are hyperplanes in the 

(A . , AM - J plane. 
21 *The optimum test is straightforward to find. We shall find however, 

when we consider specific examples that the error probabilities are 
frequently difficult to compute. 

3. A particular test of importance is the minimum total probability of 
error test. Here we compute the a posteriori probability of each hypothesis 
Pr (H,IR) and choose the largest. 

These points will be appreciated more fully as we proceed through 
various applications. 

These two sections complete our discussion of simple hypothesis tests. 
A case of importance that we have not yet discussed is the one in which 
several source outputs are combined to give a single hypothesis. To study 
this detection problem, we shall need some ideas from estimation theory. 
Therefore we defer the composite hypothesis testing problem until Section 
2.5 and study the estimation problem next. 

2.4 ESTIMATION THEORY 

In the last two sections we have considered a problem in which one of 
several hypotheses occurred. As the result of a particular hypothesis, a 
vector random variable r was observed. Based on our observation, we 
shall try to choose the true hypothesis. 

In this section we discuss the problem of parameter estimation. Before 
formulating the general problem, let us consider a simple example. 

Example 1. We want to measure a voltage a at a single time instant. From physical 
considerations, we know that the voltage is between - V and + Vvolts. The measure- 
ment is corrupted by noise which may be modeled as an independent additive zero- 
mean Gaussian random variable n. The observed variable is Y. Thus 

r =a+n. (116) 
The probability density governing the observation process is P~I~(RIA). In this case 

1 
prra(R(A) = p,(R - A) = v 

d2 7T (Jn 

(117) 

The problem is to observe Y and estimate a. 

This example illustrates the basic features of the estimation problem. 



Model 53 

A model of the general estimation problem is shown in Fig. 2.17. The 
model has the following four components: 

Parameter Space. The output of the source is a parameter (or variable). 
We view this output as a point in a parameter space. For the single- 
parameter case, which we shall study first, this will correspond to segments 
of the line -oo < A < 00. In the example considered above the segment is 

(- K 0 

Probabilistic Mapping from Parameter Space to Observation Space. This 
is the probability law that governs the effect of a on the observation. 

Observation Space. In the classical problem this is a finite-dimensional 
space. We denote a point in it by the vector R. 

Estimation Rule. After observing R, we shall want to estimate the value 
of a. We denote this estimate as 6(R). This mapping of the observation 
space into an estimate is called the estimation rule. The purpose of this 
section is to investigate various estimation rules and their implementations. 

The second and third components are familiar from the detection prob- 
lem. The new features are the parameter space and the estimation rule. 
When we try to describe the parameter space, we find that two cases arise. 
In the first, the parameter is a random variable whose behavior is governed 
by a probability density. In the second, the parameter is an unknown 
quantity but not a random variable. These two cases are analogous to the 

observation space 

Fig. 2.17 Estimation model. 
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source models we encountered in the hypothesis-testing problem. To corre- 
spond with each of these models of the parameter space, we shall develop 
suitable estimation rules. We start with the random parameter case. 

2.4.1 Random Parameters: Bayes Estimation 

In the Bayes detection problem we saw that the two quantities we had 
to specify were the set of costs Crr and the a priori probabilities Pi. The 
cost matrix assigned a cost to each possible course of action. Because there 
were M hypotheses and M possible decisions, there were M2 costs. In 
the estimation problem a and ci(R) are continuous variables. Thus we must 
assign a cost to all pairs [a, a(R)] over the range of interest. This is a 
function of two variables which we denote as C(a, ci). In many cases of 
interest it is realistic to assume that the cost depends only on the error of 
the estimate. We define this error as 

a,(R) 4 B(R) - a. uw 

The cost function C(a,) is a function of a single variable. Some typical 
cost functions are shown in Fig. 2.18. In Fig. 2.18a the cost function is 
simply the square of the error: 

C(a,) = ac2. (119) 

This cost is commonly referred to as the squared error cost function. We 
see that it accentuates the effects of large errors. In Fig. 2.18b the cost 
function is the absolute value of the error: 

In Fig. 2.18~ we assign zero cost to all errors less than &A/2. In other 
words, an error less than A/2 in magnitude is as good as no error. If 
at, > A/2, we assign a uniform value: 

C(a,) = 0, 
A 

Ia,1 < 2’ 

A = 1, IQEI > -2’ 
(121) 

In a given problem we choose a cost function to accomplish two 
objectives. First, we should like the cost function to measure user satis- 
faction adequately. Frequently it is difficult to assign an analytic measure 
to what basically may be a subjective quality. 

Our goal is to find an estimate that minimizes the expected value of the 
cost. Thus our second objective in choosing a cost function is to assign one 
that results in a tractable problem. In practice, cost functions are usually 
some compromise between these two objectives. Fortunately, in many 
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Fig. 2.18 Typical cost functions: (a) mean-square error; (6) absolute error; (c) uniform 
cost function. 

problems of interest the same estimate will be optimum for a large class of 
cost functions. 

Corresponding to the a priori probabilities in the detection problem, we 
have an a priori probability density p,(A) in the random parameter estima- 
tion problem. In all of our discussions we assume that p,(A) is known. If 
p,(A) is not known, a procedure analogous to the minimax test may be 
used. 

Once we have specified the cost function and the a priori probability, we 
may write an expression for the risk: 

x n E{C[a, @)I} = Ia dA sm C[A, ci(R)]p,,,(A, R)dR. (122) --co --a0 

The expectation is over the random variable a and the observed variables 
r. For costs that are functions of one variable only (122) becomes 

zR = /IL) dA/:a CIA - @hz,r(A, R) dR. (123) 
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The Bayes estimate is the estimate that minimizes the risk. It is straight- 
forward to find the Bayes estimates for the cost functions in Fig. 2.18. 
For the cost function in Fig. 2.18a, the risk corresponds to mean-square 
error. We denote the risk for the mean-square error criterion as X,,. 
Substituting (119) into (123), we have 

JLs = /yrn dA I:_ dR[A - 6(R)]2p,,,(~, R). (124) 

The joint density can be rewritten as 

p,,,(A, R) = pr(R)p,,.(AIR). 
Using (125) in (124), we have 

(125) 

iR ms = 
s 

ao dRpr(R) 
-CO s 

ao dA[A - ~(R)12p,,,(AIR). (126) 
-m 

m 
Now the inner integral and 
.inimize S ‘ms by minimizing t 

Pm are non-negative. Therefore we can 
he inn er i .ntegral. We denote this estimate 

&m,(R). To find it we differentiate the inner integral with respect to 6(R) 
and set the result equal to zero: 

d 
- fm WA - m12Pa,r(AIw A da --oo 

s ao s 
* = -2 APa,r(AiR)dA + u(R) p,,,(AIR) dA. (127) 

--oo -CO 

Setting the result equal to zero and 
equals 1, we have 

observing that the second integral 

6ms(R) = 
s 

O” d/i APa,r(A IN. w8) 
--Q) 

This is a unique minimum, for the second derivative equals two. The term 
on the right side of (128) is familiar as the mean of the a posteriori density 
(or the conditional mean). 

Looking at (126), we see that if d(R) is the conditional mean the inner 
integral is just the a posteriori variance (or the conditional variance). 
Therefore the minimum value of Xms is just the average of the conditional 
variance over all observations R. 

To find the Bayes estimate for the absolute value criterion in Fig. 2.18b 
we write 

x abs = ao dRp,(R) 
s 

dA[lA - @)]l~cz,r(AIR). (129 
--oo 

To minimize the inner integral we write 
&RI 

= s O” I(R) dA [6(R) - A]Pa,.(AIR) + s 
dA[A - B(R)]paI,(AIR). 

-00 d(R) 
(130) 
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Differentiating with respect to 6(R) and setting the result equal to zero, 
we have 

s &bs(R) 

d/I PadAIR) = j- &f p&IIR). 
-CO has(R) 

This is just the definition of the median of the a posteriori density. 
The third criterion is the uniform cost function in Fig. 2.18~. The risk 

expression follows easily : 

To minimize this equation we maximize the inner integral. Of particular 
interest to us is the case in which A is an arbitrarily small but nonzero 
number. A typical a posteriori density is shown in Fig. 2.19. We see that 
for small A the best choice for 6(R) is the value of A at which the a 
posteriori density has its maximum. We denote the estimate for this 
special case as dmap (R), the maximum a posteriori estimate. In the sequel 

A we use amap (R) without further reference to the uniform cost function. 
To find brnap we must have the location of the maximum of p&4 IR). 

Because the logarithm is a monotone function, we can find the location of 
the maximum of In palr(AIR) equally well. As we saw in the detection 
problem, this is frequently more convenient. 

If the maximum is interior to the allowable range of A and In pa ,,(A IR) 
has a continuous first derivative then a necessary, but not sufficient, 
condition for am .aximum can be obtained by differentiating In pa1 .(A I R) 
with respect t oA and sett ing the result equal to zero: 

a lnp,,r(AlR) = 
8A 

0. 
A = d(R) 

(133) 

Fig. 2.19 An a posteriori density. 
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We refer to (133) as the MAP equation. In each case we must check to see 
if the solution is the absolute maximum. 

We may rewrite the expression for P,,,(A IR) to separate the role of the 
observed vector R and the a priori knowledge: 

Pa,rwo = Pr , a(RI4Pd4 
Pm l 

Taking logarithms, 

lnPa,r(AlR) = In Pr Ia(RIA) + In Pa(A) - In P,(R)- (13% 
For MAP estimation we are interested only in finding the value of A 

where the left-hand side is maximum. Because the last term on the 
hand side is not a function of A, we can consider just the function 

right- 

44 4 lnPr,.(Rl4 + InPa( (136) 

The first term gives the probabilistic dependence of R on A and the 
second describes a priori knowledge. 

The MAP equation can be written as 

mo = a ln Prla(Rl4 
aA 

= 
A = &RI i3A 

+ a ln Pa(A) 
aA 0. WV 

A = d(R) A = t%(R) 

Our discussion in the remainder of the book emphasizes minimum mean- 
square error and maximum a posteriori estimates. 

To study the implications of these two estimation procedures we 
consider several examples. 
Example 2. Let 

ri = a + a, i= I,2 ,..., N. (138) 
We assume that a is Gaussian, N(0, ua), and that the nt are each independent 

Gaussian variables N(0, o,,). Then 

1 
pr,a(RlA) = fir- =P ( 

(R, - Al2 -- 
f=l n =n 

2an2 1 

9 

1 
P,(A) = - 

42 r  exP ua ( 
A2 

-37 a 1 l 

(139) 

To find d,,(R) we need to know pa &AIR). One approach is to find pF(R) and 
substitute it into (134), but this procedure is algebraically tedious. It is easier to 
observe that pa &AIR) is a probability density with respect to a for any R. Thus pr(R) 
just contributes to the constant needed to make 

s a3 
PaIdAIR) dA = 1. (140) 

-CO 

(In other words, pF(R) is simply a normalization constant.) Thus 

PaIlJAIR) = 
[ 

(f!$~Z&] exp -JfZ>RiJ A)2 + $ 

i I\ 

. (141) 
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Rearranging the exponent, completing 
only on Rt2 into the constant, we have 

the square, and absorbing terms depending 

p&AIR) = k(R)exp 
(142) 

where 

(143) 

is the a posteriori variance. 
We see that paIr(AIR) is just a Gaussian density. The estimate d,,(R) is just the 

conditional mean 

Because the a posteriori variance is not a function of R, the mean-square risk 
equals the a posteriori variance (see (126)). 

Two observations are useful : 

1. The Rt enter into the a posteriori density only through their sum. Thus 

Z(R) = 2 Ri 
i=l 

(145) 

is a suficient statistic. This idea of a sufficient statistic is identical to that in the 
detection problem. 

2. The estimation rule uses the information available in an intuitively logical 
manner. I f  aa2 CC o,~/N, the a priori knowledge is much better than the observed data 
and the estimate is very close to the a priori mean. (In this case, the a priori mean is 
zero.) On the other hand, if aa >> an2/N, the a priori knowledge is of little value and 
the estimate uses primarily the received data. In the limit 8,, is just the arithmetic 
average of the Rt. 

lim 
on2 

d,,(R) = & 2 Ri. 
--0 i=l 
Noa 

(146) 

The MAP estimate for this case follows easily. Looking at (142), we see that because 
the density is Gaussian the maximum value of paIr(AIR) occurs at the conditional 
mean. Thus 

4mwm = &SW (147) 

Because the conditional median of a Gaussian density occurs at the conditional 
mean, we also have 

hms(R) = cfms(W w-0 

Fi 
Thus we see that for this particu lar example all three cost functions in 
g. 2.1 8 lead to the same estimate. This invariance to th .e choice of a cost 

function is obviously a useful feature because of the subjective judgments 
that are frequently involved in choosing C(a,). Some conditions under 
which this invariance holds are developed in the next two pr0perties.t 

t These properties are due to Sherman [20]. Our derivation is similar to that given 
by Viterbi [36]. 
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Property 1. We assume that the cost function C(a,) is a symmetric, convex- 
upward function and that the a posteriori density pa ,,(A IR) is symmetric 
about its conditional mean; that is, 

a%) = cc- a,) (symmetry), (149) 

C(bx, + (1 - @x2) < bC(x,) + (1 - b) C(Xz) (convexity) (150) 

for any b inside the range (0, 1) and for all x1 and x2. Equation 150 simply 
says that all chords lie above or on the cost function. 

This condition is shown in Fig. 2.20a. If the inequality is strict whenever 
x1 # x2, we say the cost function is strictly convex (upward). Defining 

da-8 - ms = a - E[aIR] Wl) 

the symmetry of the a posteriori density implies 

P,,r(ZIW = Pd-~IW~ (152) 

The estimate 6 that minimizes any cost function in this class is identical 
to &ms (which is the conditional mean). 

Fig. 2.20 Symmetric convex cost functions: (n) convex; (6) strictly convex. 
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proof. As before we can minimize the conditional risk [see (126)]. 
Define 

X,(6IR) 12 E,[C@ - a)lR] = E,[C(a - d)lR], (153) 

where the second equality follows from (149). We now write four equivalent 
expressions for S&Z (R) : 

,a,(tiIR) = 
s 

O” C(6 - dms - ZIP, ,r@ I w dz (154) 
--a0 

[Use (151) in (153)] 

= s O3 C(6 - bms + ~lP~,d~IJQ 0 (155) 
--CO 

[( 152) implies this equality] 

[( 149) implies this equality] 

[( 152) implies this equality]. 

We now use the convexity condition (150) with the terms in (155) and 
(157): 

X,(BIR) = W(W[z + @Ins - S)] + C[Z - (h,, - S)]}lR) 

2 E{C[+(Z + (Cims - b)) + +(Z - (Cims - a))] [ R} 

= E[C(Z)IR]. (158) 

Equality will be achieved in (158) if dms = &. This completes the proof. 
If C(a,) is strictly convex, we will have the additional result that the 
minimizing estimate ci is unique and equals bms. 

To include cost functions like the uniform cost functions which are not 
convex we need a second property. 

Property 2. We assume that the cost function is a symmetric, nondecreasing 
function and that the a posteriori density pa,@ IR) is a symmetric (about 
the conditional mean), unimodal function that satisfies the condition 

lim C(x)p,&lR) = 0. 
X-+00 

The estimate & that minimizes any cost function in this class is identical to 

4rlS~ The proof of this property is similar to the above proof [36]. 
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The significance of these two properties should not be underemphasized. 
Throughout the book we consider only minimum mean-square and maxi- 
mum a posteriori probability estimators. Properties 1 and 2 ensure that 
whenever the a posteriori densities satisfy the assumptions given above the 
estimates that we obtain will be optimum for a large class of cost functions. 
Clearly, if the a posteriori density is Gaussian, it will satisfy the above 
assumptions. 

We now consider two examples of a different type. 

Example 3. The variable a appears in the signal in a nonlinear manner. We denote 
this dependence by s(A). Each observation rf consists of s(A) plus a Gaussian random 
variable ni, N(0, o,J. The ni are statistically independent of each other and a. Thus 

ri = s(A) + nf. (159) 
Therefore 

P~I~AIR) = k(R) ew (-!{ fk ‘“b- s(A)12 + $}I. (160) 

This expression cannot be further simplified without specifying s(A) explicitly. 
The MAP equation is obtained by substituting (160) into (13 7) 

2 N 

&m, w 
aa wo =- 

2 21 Ri - 
on is1 - s(A)1 aA A= ;,,+j’ (161) 

To solve this explicitly we must specify s(A). We shall find that an analytic solution 
is generally not possible when s(A) is a nonlinear function of A. 

Another type of problem that frequently arises is the estimation of a 
parameter in a probability density. 

Example 4. The number of events in an experiment obey a Poisson law with mean 
value a. Thus 

A” 
Pr (n events 1 a = A) = Texp (-A), n = 0, 1,. . . . (162) . 

We want to observe the number of events and estimate the parameter a of the Poisson 
law. We shall assume that a is a random variable with an exponential density 

Pa(A) = 
h exp (- AA), A > 0, 
0 

9 elsewhere. (163) 

The a posteriori density of a is 

(164) 

Substituting (162) and (163) into (164), we have 

where 
PaIn(AlN) = W)[AN exp (- 41 + 91, A r 0, (165) 

k(N) (l + ‘IN+’ = 
N! (166) 
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in order for the density to integrate to 1. (As already pointed out, the constant is 
unimportant for MAP estimation but is needed if we find the MS estimate by 
integrating over the conditional density.) 

The mean-square estimate is the conditional mean: 

6 ms (N) (’ ’ ‘IN+’ = 
s 

O” AN+l exp[ A(1 + A)] dA - 
N! o 

(1 + /\)N+l 
= (1 + h)N+2 w + 1) = (167) 

TO find 8m,, we take the logarithm of (165) 

lnp,,,(AIN) = Nln A - A(1 + h) + In k(N). (168) 

By differentiating with respect to A, setting the result equal to zero, and solving, we 
obtain 

drntbp WI 
N =-. 

l+A 
(169) 

Observe that Cimap is not equal to cfms. 

Other examples are developed in the problems. The principal results 
of this section are the following: 

1. The minimum mean-square error estimate (MMSE) is always 
the mean of the a posteriori density (the conditional mean). 

2. The maximum a posteriori estimate (MAP) is the value of A 
at which the a posteriori density has its maximum. 

3. For a large class of cost functions the optimum estimate is the 
conditional mean whenever the a posteriori density is a unimodal 
function which is symmetric about the conditional mean. 

These results are the basis of most of our estimation work. As we study 
more complicated problems, the only difficulty we shall encounter is the 
actual evaluation of the conditional mean or maximum. In many cases o f 
interest the MAP and MMSE estimates will turn out to be equal. 

We now turn to the second class of estimation problems described in the 
introduction. 

2.4.2 Real (Nonrandom) Parameter Estimation7 

In many cases it is unrealistic to treat the unknown parameter as a 
random variable. The problem formulation on pp. 52-53 is still appro- 
priate. Now, however, the parameter is assumed to be nonrandom, and 
we want to design an estimation procedure that is good in some sense. 

7 The beginnings of classical estimation theory can be attributed to Fisher [5, 6, 7, 81. 
Many discussions of the basic ideas are now available (e.g., Cramer [9]), Wilks [lo], 
or Kendall and Stuart [ll]). 
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A logical first approach is to try to modify the 
last section to eliminate the average over p&4). As 
mean-square error criterion, 

X(A) n 
s 

* km - 42Pr,a@I -CO 

Bayes procedure in the 
an example, consider a 

where the expectation is only over R, for it is the only random variable in 
the model. Minimizing X(A), we obtain 

L&(R) = A. (171) 

The answer is correct, but 
quantity that we are trying to 

not of any value, for A is the 
find. Thus we see that this direct 

is not fruitful. A more useful method in the nonrandom parameter case 

unknown 
approach 

is to examine other possible measures of quality of estimation procedures 
and then to see whether we can find estimates that are good in terms of 
these measures. 

The first measure of quality to be considered is the expectation of the 
estimate 

E[d(R)] 4 /+a WV Pr,.(RIA) dR* (172) 
--a0 

The possible values of the expectation can be grouped into three classes 

1. If E[b(R)] = A, for all values of A, we say that the estimate is UIZ- 
bimed. This statement means that the average value of the estimates equals 
the quantity we are trying to estimate. 

2. If Q?(R)] = A + B, where B is not a function of A, we say that the 
estimate has a known bias. We can always obtain an unbiased estimate by 
subtracting B from 6(R). 

3. If&?(R)] = A + B(A), we say that the estimate has an unknown bias. 
Because the bias depends on the unknown parameter, we cannot simply 
subtract it out. 

Clearly, even an unbiased estimate may give a bad result on a particular 
trial. A simple example is shown in Fig. 2.21. The probability density of 
the estimate is centered around A, but the variance of this density is large 
enough that big errors are probable. 

A second measure of quality is the variance of estimation error: 

Var [b(R) - A] = E{[&(R) - A12} - B2(A). (173) 

This provides a measure of the spread of the error. In general, we shall 
try to find unbiased estimates with small variances. There is no straight- 
forward minimization procedure that will lead us to the minimum variance 
unbiased estimate. Therefore we are forced to try an estimation procedure 
to see how well it works. 
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Fig. 2.21 Probability density for an estimate. 

Maximum Likelihood Estimation. There are several ways to motivate 
the estimation procedure that we shall use. Consider the simple estimation 
problem outlined in Example 1. Recall that 

r =A+n, (174) 

prla(RjA) = (16&,)-~ exp [-$(R - A)2]. 
n 

(175) 

We choose as our estimate the value of A that most likely caused a given 
value of R to occur. In this simple additive case we see that this is the same 
as choosing the most probable value of the noise (N = 0) and subtracting 
it from R. We denote the value obtained by using this procedure as a 
maximum likelihood estimate. 

6,,(R) = R. (176) 
In the general case we denote the function prla(RI A), viewed as a 

function of A, as the likelihood function. Frequently we work with the 
logarithm, In Prla(RIA), and denote it as the log likelihood function. The 
maximum likelihood estimate 6,,(R) is that value of A at which the likeli- 
hood function is a maximum. If the maximum is interior to the range of A, 
and lnp,l.(RIA) has a continuous first derivative, then a necessary con- 
dition on d,,(R) is obtained by differentiating lnp,,JRIA) with respect to 
A and setting the result equal to zero: 

a ln Pr,a(W 
aA 

= . 0 
A=d,z(R) 

This equation is called the likelihood equation. Comparing (137) and (177), 
we see that the ML estimate corresponds mathematically to the limiting 
case of a MAP estimate in which the a priori knowledge approaches zero. 

In order to see how effective the ML procedure is we can compute the 
bias and the variance. Frequently this is difficult to do. Rather than 
approach the problem directly, we shall first derive a lower bound on the 
variance on any unbiased estimate. Then we shall see how the variance of 
d,,(R) compares with this lower bound. 
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Cram&Rao Inequality: Nonrandom Parameters. We now want to con- 
sider the variance of any estimate b(R) of the real variable A. We shall 
prove the following statement. 

Theorem. (a) If ci(R) is any unbiased estimate of A, then 

Var [B(R) 

or, equivalently, 

Var [d(R) - A] > 

(178) 

where the following conditions are assumed to be satisfied: 

0 C 

exist and are absolutely integrable. 
The inequalities were first stated by Fisher [6] and proved by DuguC [31]. 

They were also derived by Cramer [9] and Rao [ 121 and are usually 
referred to as the Cramer-Rao bound. Any estimate that satisfies the 
bound with an equality is called an eficient estimate. 

The proof is a simple application of the Schwarz inequality. Because 
B(R) is unbiased, 

O” E[b(R) - A] n 
s 

--ao Pr,a@lA)[w9 - AI dR = 0 . (1 80) 

Differentiating both sides with respect to A, we have 

d 

-1 

00 

dA _ mPr,oo[6(R) - AI dR 
al a = 

s -ao a {Pr,a(RIA)P(R) - 41 dR = 09 (181) 

where condition (c) allows us to bring the differentiation inside the integral. 
Then 

co pr,JRIA) dR + 
s 

ap,i;yiA’ [B(R) - A] dR = 0. (182) 
--oo 

The first integral is just + 1. Now observe that 

ap,.,.oQo 
i3A = 

a lnp,l,op 
aA ru 

, (RI/J) 
. (183) 
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Substituting (183) into (182), we have 

s O” a lIv~,cz(Rl4 
i3A 

pr,.(RIA)[B(R) - A] dR = 1. 
--oo 

Rewriting, we have 

a0 
s [ 

alnpr,.(RIA) 4 
aA 

prIa(RIA) dpl.,,(RIA) [d(R) - Al dR = 1, (18% 
-00 I[ I 

and, using the Schwarz inequality, we have 

alnhdRIA) 2p , @IA) dR 
aA I 

ru 

X [B(R) - A]2pr,a(RIA)dR 
> 

> 1, (186) 

where we recall from the derivation of the Schwarz inequality that equality 
holds if and only if 

a ln Pq.(RIA) 
8A 

= [h(R) - A] k(A), (187) 

for all R and A. We see that the two terms of the left side of (186) are the 
expectations in statement (a) of (178). Thus, 

-l E{[&(R) - A12} 2 . (188) 

To prove statement (b) we observe 

s 00 -* P&q4 dR = 1. 
Differentiating with respect to A, we have 

(18% 
a0 +r,dRIA) dR s O” = 

aA 
alnb,dRIA)p , @IA)& 

aA ra = 0. (190) 
-a, --Q) 

Differentiating again with respect to A and applying (183), we obtain 

s ao a21np,ldRIA)p , (R(A)& 
aA ra -CO 

+ = 0 (191) 

or 
E a2 In jh,.(RIA) aA ] = -E[alnp;&@‘A)]2, (192) 

which together with (188) gives condition (b). 
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Several important observations should be made about this result. 

1. It shows that any unbiased estimate must have a variance greater 
than a certain number. 

2. If (187) is satisfied, the estimate 6,,(R) will satisfy the bound with an 
equality. We show this by combining (187) and (177). The left equality is 
the maximum likelihood equation. The right equality is (187): 

0 = a lnPr,a(RI4 = (6(R) - A) k(A) l 

aA 
(193) 

A = &l(R) , .  

A = a,l(R) 

In order for the right-hand side to equal zero either 

or 
WQ = ci,l(R) (194) 

k@,,) = 0. W) 

Because we want a solution that depends on the data, we eliminate (195) 
and require (194) to hold. 

Thus, cyan efficient estimate exists, it is h,,(R) and can be obtained as a 
unique solution to the likelihood equation. 

3. If an efficient estimate does not exist [i.e., a lnp,,&RIA)/U cannot 
be put into the form of (187)], we do not know how good Z,,(R) is. 
Further, we do not know how close the variance of any estimate will 
approach the bound. 

4. In order to use the bound, we must verify that the estimate of concern 
is unbiased. Similar bounds can be derived simply for biased estimates 
(Problem 2.4.17). 

We can illustrate the application of ML estimation and the Cramer-Rao 
inequality by considering Examples 2, 3, and 4. The observation model is 
identical. We now assume, however, that the parameters to be estimated 
are nonrandom variables. 

Example 2. From (138) we have 
Yi = A + a, i= I,2 ,..., N. (196) 

Taking the logarithm of (139) and differentiating, we have 

Thus 
f  

_ A . W) 

1 N 
&l(R) = N 2 Ri. (198) 

i=l 

To find the bias we take the expectation of both sides, 

E[(iml(R)] = $ 5 E(Ri) = ; 5 A = A, 
i=l f=l 

so that L&(R) is unbiased. 

(199) 
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Because the expression in (197) has the form required by (187), we know that 
d,,(R) is an efficient estimate. To evaluate the variance we differentiate (197): 

Using (179) and the efficiency result, we have 

Var [B,,(R) - A] = $$ (201) 

Skipping Example 3 for the moment, we go to Example 4. 

Example 4. Differentiating the logarithm of (162), we have 

alnPr(n = NIA) -= 
aA 

&(Nln A - A - In N!) 

The ML estimate is 

N 1 =-- 
A 

= ; (N - A). (202) 

t&(N) = N. (203) 

It is clearly unbiased and efficient. To obtain the variance we differentiate (202): 

a21nPr(n = NIA) = N em. 
3A2 A2 WV 

Thus 
A2 A2 Var [d&N) - A] = E(N) = -J- = A. (20% 

In both Examples 2 and 4 we see that the ML estimates could have been 
obtained from the MAP estimates [let Q -+ oo in (144) and recall that 
6,,(R) = d,,,(R) and let X -+ 0 in (169)]. 

We now return to Example 3. 

Example 3. From the first term in the exponent in (160), we have 

a lwdRl4 1 N =- -. 
aA un2*=1 i Cr 

R _ s(A)] %A) 
3A (206) 

In general, the right-hand side cannot be written in the form required by (187), and 
therefore an unbiased efficient estimate does not exist. 

The likelihood equation is 

If  the range of s(A) includes (l/N) CE 1 Rt, a solution exists : 

1 N 
s[drn@)] = N 2 Rt. 

f-l 

I f  (208) can be satisfied, then 

(207) 

(208) 

(20% 
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[Observe that (209) tacitly assumes that s-l(*) exists. I f  it does not, then even in the 
absence of noise we shall be unable to determine A unambiguously. I f  we were designing 
a system, we would always choose an s(e) that allows us to find A unambiguously in 
the absence of noise.] I f  the range of s(a) does not include (l/N) Cp= 1 Rf, the maximum 
is at an end point of the range. 

We see that the maximum likelihood estimate commutes over nonlinear operations. 
(This is not true for MS or MAP estimation.) I f  it is unbiased, we evaluate the bound 
on the variance by differentiating (206): 

a2 brkdRIA) = 1 i 
aA 2 

[R 
f an f=l (210) 

Observing that 
EEQ - s(A)] = E(nr) = 0, 

we obtain the following bound for any unbiased estimate, 
(211) 

2 

Var [6(R) - A] 2 lV[a,P:),aA]2* (212) 

We see that the bound is exactly the same as that in Example 2 except for a factor 
[as(A)/aA12. The intuitive reason for this factor and also some feeling for the con- 
ditions under which the bound will be useful may be obtained by inspecting the 
typical function shown in Fig. 2.22. Define 

Then 
Y = s(A). (213 

Yi = Y+ nf. (214) 

The variance in estimating Y is just u,,~/N. However, if ye, the error in estimating Y, 
is small enough so that the slope is constant, then 

A -L 
’ - &(A) 

I 

(215) 

aA A = c?(R) 

Actual value of A 

as(A) 
aA 

I  

+ l * *  

A=AA 

Fig. 2.22 Behavior of error variance in the presence of small errors. 
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and 
Var (~2 

Var (a’) ’ [as(A)/3A12 = N[~s(~;,Uja. (216) 

We observe that if y, is large there will no longer be a simple linear relation between 
ye and a,. This tells us when we can expect the Cramer-Rao bound to give an accurate 
answer in the case in which the parameter enters the problem in a nonlinear manner. 
Specifically, whenever the estimation error is small, relative to A a2s(A)/8A2, we 
should expect the actual variance to be close to the variance bound given by the 
Cramer-Rao inequality. 

The properties of the ML estimate which are valid when the error is 
small are generally referred to as asymptotic. One procedure for developing 
them formally is to study the behavior of the estimate as the number of 
independent observations N approaches infinity. Under reasonably general 
conditions the following may be proved (e.g., Cramer [9], pp. 500-504). 

1. The solution of the likelihood equation (177) converges in probability 
to the correct value of A as N -+ 00. A~zy estimate with this property is 
called consistent. Thus the ML estimate is consistent. 

2. The ML estimate is asymptotically efficient; that is, 

. 
lim 

N-+a 

Var [l&(R) - A] 
a21np,,.(R(A) -l = ‘* 

i3A2 

3. The ML estimate is asymptotically Gaussian, N(A, oaf). 

These properties all deal with the behavior of ML estimates for large N. 
They provide some motivation for using the ML estimate even when an 
efficient estimate does not exist. 

At this point a logical question is: “ Do better estimation procedures 
than the maximum likelihood procedure exist ?” Certainly if an efficient 
estimate does not exist, there may be unbiased estimates with lower 
variances. The difficulty is that there is no general rule for finding them. 
In a particular situation we can try to improve on the ML estimate. In 
almost all cases, however, the resulting estimation rule is more complex, 
and therefore we emphasize the maximum likelihood technique in all of 
our work with real variables. 

A second logical question is : “Do better lower bounds than the Cramtr- 
Rao inequality exist ?” One straightforward but computationally tedious 
procedure is the Bhattacharyya bound. The Cramer-Rao bound uses 
a2ppIa(RIA)/aA2. Whenever an efficient estimate does not exist, a larger 
bound which involves the higher partial derivatives can be obtained. 
Simple derivations are given in [ 131 and [ 141 and in Problems 2.4.23-24. 
For the cases of interest to us the computation is too involved to make the 
bound of much practical value. A second bound is the Barankin bound 
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(e.g. [ 151). Its two major advantages are that it does not require the 
probability density to be differentiable and it gives the greatest lower 
bound. Its disadvantages are that it requires a maximization over a 
function to obtain the bound and the procedure for finding this maximum 
is usually not straightforward. Some simple examples are given in the 
problems (2.4. K-19). In most of our discussions, we emphasize the 
Cramer-Rao bound. 

We now digress briefly to develop a similar bound on the mean-square 
error when the parameter is random. 

Lower Bound on the Minimum Mean-Square Error in Estimating a Random 
Parameter. In this section we prove the following theorem. 

Theorem. Let a be 
mean-square error 

a rand om varia ble and r, the observation vector. 
of any esti mate 6(R) satisfies t he inequality 

The 

-’ (217) . 
Observe that the probabili ty density is 
tion is over both a and r. The followi 

a joint density 
ng conditions 

and that the 
are assumed 

expecta- 
to exist: 

1 apr,,(R9 4 l 

.  

3A 
is absolutely integrable with respect to R and A. 

2 a2Pr,a(R9 4 l 

.  

3A2 
is absolutely integrable with respect to R and A. 

3. The conditional expectation of the error, given A, is 

B(A) = 
s 

m [6(R) - Al Pr,.(RI4 cm* 
-CD 

We assume that 
lim B(A)pa(A) = 0, 

A-*a 

lim B(A)p,(A) = 0. 

(218) 

The proof is a simple modification of the one on p. 66. Multiply both 
sides of (218) by pa(A) and then differentiate with respect to A : 

d 
c0 a [Pa(A) B(A)1 = - 

I 
Pr,a(R 4 dR 

-00 + s co “-f;’ A) [S(R) - A] dR. (221) -Cl3 
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Now integrate with respect to A : 

pa(A) B(A) + * = 00 
* -1+ s s apr9f;’ A) [L?(R) - A] dA dR. (222) --co -aI -co 

The assumption in Condition 3 makes the left-hand side zero. The 
remaining steps are identical. The result is 

E {[B(R) - a12} > a lnpr,a(R A) 2 - l 
8A 11) (223) 

or, equivalently, 

E([a^(R) - a12} 2 a2 ln pr,a(RIA) aA ] - E[a--$@]}-’ (224) 

with equality if and only if 

a In bdR, A) = &j(R) - 
3A 

A] 9 (225) 

for all R and all A. (In the nonrandom variable case we used the Schwarz 
inequality on an integral over R so that the constant k(A) could be a 
function of A. Now the integration is over both R and A so that k cannot 
be a function of A.) Differentiating again gives an equivalent condition 

a2 In pr,U(R9 A) k 
-c-  

3A2 
. 

Observe that (226) may be written in terms of the a posteriori density, 

a2 In PaI.(AIR) 

i3A2 
=- k . (227) 

Integrating (227) twice and putting the result in the exponent, we have 

PaI.(AIR) = exp(-kA2 + CIA + C,) (228) 

for all R and A; but (228) is simply a statement that the a posteriori 
probability density of a must be Gaussian for all R in order for an efficient 
estimate to exist. (Note that C, and C2 are functions of R). 

Arguing as in (193)-(195), we see that if (226) is satisfied the MAP 
estimate will be efficient. Because the minimum MSE estimate cannot have 
a larger error, this tells us that b,,(R) = b,,,(R) whenever an efficient 
estimate exists. As a matter of technique, when an efficient estimate does 
exist, it is usually computationally easier to solve the MAP equation than 
it is to find the conditional mean. When an efficient estimate does not exist, 
we do not know how closely the mean-square error, using either b,,(R) 
or Cimap(R), approaches the lower bound. Asymptotic results similar to 
those for real variables may be derived. 
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2.4.3 Multiple Parameter Estimation 

In many problems of interest we shall want to estimate more than one 
parameter. A familiar example is the radar problem in which we shall 
estimate the range and velocity of a target. Most of the ideas and techniques 
can be extended to this case in a straightforward manner. The model is 
shown in Fig. 2.23. If there are K parameters, a,, a2, . . . , UK, we describe 
them by a parameter vector a in a K-dimensional space. The other elements 
of the model are the same as before. We shall consider both the case in 
which a is a random parameter vector and that in which a is a real (or 
nonrandom) parameter vector. Three issues are of interest. In each the 
result is the vector analog to a result in the scalar case. 

1. Estimation procedures. 
2. Measures of error. 
3. Bounds on performance. 

Fig. 2.23 

(K-dimensional 
estimate) 

Multiple parameter estimation model. 
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Estimation Pvoceduue. For random variables we could consider the 
general case of Bayes estimation in which we minimize the risk for some 
arbitrary scalar cost function C(a, a), but for our purposes it is adequate 
to consider only cost functions that depend on the error. We define the 
error vector as 

= 8(R) - a. (229 

For a mean-square error criterion, the cost function is simply 

= acT(R) a,(R). (230) 

This is just the sum of the squares of the errors. The risk is 

or 

It ms = 
s 

* PrWdR * K (4(R) - A*)2 P*llJAIR) dA* (232) 
--a0 s b --03 f=l 1 

As before, we can minimize the inner integral for each R. Because the 
terms in the sum are positive, we minimize them separately. This gives 

ii ms: (R) 1 * = ArPa,r(AIR) dii 
--oo 

or 

(233 

It is easy to show that mean-square estimation commutes over linear 
transformations. Thus, if 

b = Da, (235) 

where D is a L x K matrix, and we want to minimize 

(236) 

the result will be, 

bms(R) = D8ms(R) (237) 

[see Problem 2.4.20 for the proof of (237)]. 
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For MAP estimation we must find the value of A that maximizes 

Pa,r(AIR). If 0-l e maximum is interior and a In Pa,,(AIR)/aAi exists at the 
maximum then a necessary condition is obtained from the MAP equations. 
By analogy with (137) we take the logarithm of JQ,(A]R), differentiate 
with respect to each parameter Ai, i = 1,2, . . . , K, and set the result equal 
to zero. This gives a set of K simultaneous equations: 

a ln &-i,.(AIR) 
aAi A= imap = 

0, i = 1, 2, . . . , K. (238) 

We can write (238) in a more compact manner by defining a partial 
derivative matrix operator 

This operator can be applied only to 1 x m matrices; ror example, 

8Al 3Al ‘** 3Al 
. (240) 

Several useful properties of VA are developed in Problems 2.4.27-28. 
In our case (238) becomes a single vector equation, 

Similarly, for ML estimates we must find the value of A that maximizes 
pr,.(RJA). If th e maximum is interior and a In Prl.(RIA)laAi exists at the 
maximum then a necessary condition is obtained from the likelihood 
equations : 

VAClnp,l,(RIA)l(A=~ml(R) = 0. (242) 

In both cases we must verify that we have the absolute maximum. 

1s 

Measures of Error. For nonrandom 
the bias. Now the bias is a vector, 

variables the first measure of interest 

B(A) n E[a,(R)] = E[ii(R)] - A. (243) 
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If each component of the bias vector is zero for every A, we say that the 
estimate is unbiased. 

In the single parameter case a rough measure of the spread of the error 
was given by the variance of the estimate. In the special case in which 
a,(R) was Gaussian this provided a complete description: 

1 
Pa,W = r ( 

A2 
exp 

tz 

7T Oat 
-- 1 . 

2oac 2 (244) 

For a vector variable the quantity analogous to the variance is the 
covariance matrix 

EKa c - &)(a,’ - BET)] 4 A,, (245) 
where 

i& i! E(a,) = B(A). (246) 

The best way to determine how the covariance matrix provides a 
measure of spread is to consider the special case in which the a,, are 
jointly Gaussian. For algebraic simplicity we let E(a,) = 0. The joint 
probability density for a set of K jointly Gaussian variables is 

pa,(A,) = (12~l~‘~IR~l%)-l exp (-+A,TR,-lA,) (247) 

(e.g., p. 151 in Davenport and Root [l]). 
The probability density for K = 2 is shown in Fig. 2.24a. In Figs. 

2.24&c we have shown the equal-probability contours of two typical 
densities.From (247) we observe that the equal-height contours are 
defined by the relation, 

AETA,-lA, = C2, (248) 

which is the equation for an ellipse when K = 2. The ellipses move out 
monotonically with increasing C. They also have the interesting property 
that the probability of being inside the ellipse is only a function of C2. 

Property. For K = 2, the probability that the error vector lies inside an 
ellipse whose equation is 

A,TR,-lA, = C2, (249) 
is 

P=l 

Proof. The area inside the ellipse defined by (249) is 

& = IA,I%rC2. (251) 

The differential area between ellipses corresponding to C and C + dC 
respectively is 

d& = [h,l”277CdC. W) 
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0 a 

(b) 0 C 

Fig. 2.24 Gaussian densities: [a] two-dimensional Gaussian density ; [b] equal-height 
contours, correlated variables; [c] equal-height contours, uncorrelated variables. 

The height of the probability density in this differential area is 

(27rlA,l”>-1 exp -7 . 
( 1 

(253) 

We can compute the probability of a point lying outside the ellipse by 
multiplying (252) by (253) and integrating from C to 00. 

1 -P= /ca Xexp(-T)dX=exp(-$)y (254) 

which is the desired result. 
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For this reason the ellipses described by (248) are referred to as con- 
centration ellipses because they provide a measure of the concentration of 
the density. 

A similar result holds for arbitrary K. Now, (248) describes an ellipsoid. 
Here the differential volumet in K-dimensional space is 

dv 
I*” 

‘/z 
#I2 

= 
I’(K/2 + 1) 

KCK-l dC . 

The value of the probability density on the ellipsoid is 

[(~~T)~/~IR~I%]-~ exp -$ . 
( ) (W 

Therefore 

1 
K 

- ’ = (2)K/2r(~/2 + 1) c* XK- ‘eax212 dX, s (257) 

which is the desired result. We refer to these ellipsoids as concentration 
ellipsoids. 

When the probability density of the error is not Gaussian, the concen- 
tration ellipsoid no longer specifies a unique probability. This is directly 
analogous to the one-dimensional case in which the variance of a non- 
Gaussian zero-mean random variable does not determine the probability 
density. We can still interpret the concentration ellipsoid as a rough 
measure of the spread of the errors. When the concentration ellipsoids of 
a given density lie wholly outside the concentration ellipsoids of a second 
density, we say that the second density is more concentrated than the first. 
With this motivation, we derive some properties and bounds pertaining to 
concentration ellipsoids. 

Bounds on Estimation Errors: Nonrandom Variables. In this section we 
derive two bounds. The first relates to the variance of an individual error; 
the second relates to the concentration ellipsoid. 

Property 1. Consider arty unbiased estimate of Ai. Then 

oEi2 4 Var [di(R) - Ai] > Jii, w9 

where Jii is the iith element in the K x K square matrix J- l. The elements 
in J are 

J n E a lnp,l,(RIA) a lnp,.,.(R(A) 

ij - 3Ai l 3Aj 1 
= -E a2 In PrdRIA) 

3Ai aAj I 

(259 

t e.g., Cram& [9], p. 120, or Sommerfeld [32]. 
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or 

J n E({V*[ln~rl.(RIA)I}{V*[ln~r~a(RIA)I}T) 

= -E P*(VAb PrlaCRIA)IIT)I- 
(260) 

The J matrix is commonly called Fisher’s information matrix. The equality 

in (258) holds if and only if 

hi(R) - Ai = 2 kij(A) a lv I ii (RIN 
(261) 

j=l i 

for all values of Ai and R. 
In other words, the estimation error can be expressed as the weighted 

sum of the partial derivatives of lnp,Ia(RIA) with respect to the various 
parameters. 

Proof. Because ii(R) is unbiased, 

s 
* [&i(R) - Ai]p,/a(RIA) dR = 0 
--a0 

s co 6i(R)prIa(RIA) dR = Ai. 
-al 

Differentiating both sides with respect to Aj, we have 

s 00 
--co a3 

= s 6 (R) a lnpr’a(RiA)p I i 3Aj ra (RIA) dR 
--oo 

We shall prove the result for i = 1. We define a K + 1 vector 

The covariance matrix is 

E[xxT] = 

- d,(R) - Al 

3 ln PrIa(RIA) -- 
iiAl 

I . . (265) 

(266) 



Multiple Parameter Estimation 81 

[The ones and zeroes in the matrix follow from (264).] Because it is a 
covariance matrix, it is nonnegative definite, which implies that the deter- 
minant of the entire matrix is greater than or equal to zero. (This con- 
dition is only necessary, not sufficient, for the matrix to be nonnegative 
definite.) 

Evaluating the determinant using a cofactor expansion, we have 

%,“IJI - cofactor Jll > 0. (267) 

If we assume that J is nonsingular, then 

2 , cofactor Jll 
%I - IJI 

= J1l 9 cw 

which is the desired result. The modifications for the case when J is 
singular follow easily for any specific problem. 

In order for the determinant to equal zero, the term &R) - Al must 
be expressible as a linear combination of the other terms. This is the 
condition described by (261). The second line of (259) follows from the 
first line in a manner exactly analogous to the proof in (189)-(192). The 
proof for i # 1 is an obvious modification. 

Property 2. Consider any unbiased estimate of A. The concentration ellipse 

AETA,- IA, = C2 (269) 

lies either outside or on the bound ellipse defined by 

AcTJA, = C2. (270) 

Proof. We shall go through the details for K = 2. By analogy with the 
preceding proof, we construct the covariance matrix of the vector. 

Then 

E[xxT] = 

4(R) - Al 
42(R) - A2 

X = 

: !  

a ln PP,.(RIA) 

aAl l 

a ln PP,B(RIA) 

._ aA 

% 
2 

P0172~ : 1 0 
I 

p(31,*2c Q 
2 io 1 I I ----------------------- = I 

1 0 i 41 Jl2 
I 

0 1 - :J21 J22 I i 

(271) 

(272) 
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The second equality defines a partition of the 4 x 4 matrix into four 
2 x 2 matrices. Because it is a covariance matrix, it is nonnegative definite. 
Using a formula for the determinant of a partitioned matrix,? we have 

or, assuming that A, is nonsingular and applying the product rule for 
determinants, 

(A,( IJ - &-l( > 0. (2W 
This implies 

IJ - A,-ll r 0. (275) 

Now consider the two ellipses. The intercept on the A,, axis is 

A1c2 IA I = c2+ 
Azc=O a2 

for the actual concentration ellipse and 

Ale2 = + WV 
Azc =0 11 

for the bound ellipse. 
We want to show that the actual intercept is greater than or equal to the 

bound intercept. This requires 

This inequality follows because the determinant of the 3 x 3 matrix in 
the upper left corner of (272) is greater than or equal to zero. (Otherwise 
the entire matrix is not nonnegative definite, e.g. [ 161 or [ 181.) Similarly, 
the actual intercept on the A 2E axis is greater than or equal to the bound 
intercept. Therefore the actual ellipse is either always outside (or on) the 
bound ellipse or the two ellipses intersect. 

If they intersect, we see from (269) and (270) that there must be a 
solution, A,, to the equation 

or 
A,TA,-lA, = ACTJA, (279) 

ACT[J - A,-l]A, 4 ACTDA, = 0. (280) 

In scalar notation 

or, equivalently, 

(2)2o,, + 2&D,, + 022 = O. (282) 

t Bellman [16], p. 83. 
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Solving for Alc/ASZ, 
were greater than or 

we would obtain real roots only if the discriminant 
equal to zero. This requires 

IJ - A,-1( < 0. (283) 

The inequality is a contradiction of (275). One possibility is 1 J - A,- lI = 0, 
but this is true only when the ellipses coincide. In this case all the estimates 
are efficient. 

For arbitrary K we can show that J - A,-’ is nonnegative definite. 
The implications with respect to the concentration ellipsoids are the same 
as for K = 2. 

Frequently we want to estimate functions of the K basic parameters 
rather than the parameters themselves. We denote the desired estimates 
as 

d 1 = &i,(A)9 

d 2 = g,,(A), (284) 

or 
d M = gdM(A)* 

d = gd(A) 

The number of estimates M is not related to K in general. The functions 
may be nonlinear. The estimation error is 

If we assume that the estimates are unbiased and denote the error 
covariance matrix as A,, then by using methods identical to those above 
we can prove the following properties. 

Property 3. The matrix 

A, - {v&dT(A)l)TJ - ‘{vAkdT(A)l) 
is nonnegative definite. 

(286) 

This implies the following property (just multiply the second matrix 
out and recall that all diagonal elements of nonnegative definite matrix 
are nonnegative) : 

Property 4. 

(287) 

For the special case in which the desired functions are linear, the result 
in (287) can be written in a simpler form. 
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Property 5. Assume that 

where G, is an A4 x K matrix. If the estimates are unbiased, then 

is nonnegative definite. 
4 - G,J - lGdT 

Property 6. Efficiency commutes with linear transformations but does not 
commute with nonlinear transformations. In other words, if Q is efficient, 
then a  ̂will be efficient if and only if gd(A) is a linear transformation. 

Bounds on Estimation Errors: Random Parameters. Just as in the single 
parameter case, the bound for random parameters is derived by a straight- 
forward modification of the derivation for nonrandom parameters. The 
information matrix now consists of two parts: 

J, n JD + Jp. (28% 

The matrix J, is the information matrix defined in (260) and represents 
information obtained from the data. The matrix JP represents the a priori 
information. The elements are 

The correlation matrix of the errors is 

R, n E(a,a,T). (291) 

The diagonal elements represent the mean-square errors and the off- 
diagonal elements are the cross correlations. Three properties follow easily: 

Property No. 1. 
E[a,t2] 2 JTii. (292) 

In other words, the diagonal elements in the inverse of the total informa- 
tion matrix are lower bounds on the corresponding mean-square errors. 

Property No. 2. The matrix 
JT - R,-’ 

is nonnegative definite. This has the same physical interpretation as in the 
nonrandom parameter problem. 

Property No. 3. If JT = R, -l, all of the estimates are efficient. A necessary 
and sufficient condition for this to be true is that paI.(AIR) be Gaussian 
for all R. This will be true if J, is constant. [Modify (261), (228)]. 
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A special case of interest occurs when the a priori density is a 
Gaussian density. Then 

J P = ly, 
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Kth-order 

(293) 

where A, is the covariance matrix of the random parameters. 
An even simpler case arises when the variables are independent Gaussian 

variables. Then 

J Pij ’ 2 hj9 =- 
% 

(294) 

Under these conditions only the diagonal 
a priori information. 

Results similar to Properties 3 to 6 for 
derived for the random parameter case. 

terms of J, are affected by the 

nonrandom parameters can be 

2.4.4 Summary of Estimation Theory 

In this section we developed the estimation theory results that we shall 
need for the problems of interest. We began our discussion with Bayes 
estimation of random parameters. The basic quantities needed in the 
model were the a priori density p,(A), the probabilistic mapping to the 
observation space p,la(RlA), and a cost function C(A,). These quantities 
enabled us to find the risk. The estimate which minimized the risk was 
called a Bayes estimate and the resulting risk, the Bayes risk. Two types 
of Bayes estimate, the MMSE estimate (which was the mean of the a 
posteriori density) and the MAP estimate (the mode of the a posteriori 
density), were emphasized. In Properties 1 and 2 (pp. 60-61) we saw that 
the conditional mean was the Bayes estimate for a large class of cost 
functions when certain conditions on the cost function and a posteriori 
density were satisfied. 

Turning to nonrandom parameter estimation, we introduced the idea 
of bias and variance as two separate error measures. The Cramer-Rao 
inequality provided a bound on the variance of any unbiased estimate. 
Whenever an efficient estimate existed, the maximum likelihood estimation 
procedure gave this estimate. This property of the ML estimate, coupled 
with its asymptotic properties, is the basis for our emphasis on ML 
estimates. 

The extension to multiple parameter estimation involved no new con- 
cepts. Most of the properties were just multidimensional extensions of the 
corresponding scalar result. 

It is important to emphasize the close relationship between detection and 
estimation theory. Both theories are based on a likelihood function or 
likelihood ratio, which, in turn, is derived from the probabilistic transition 
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mechanism. As we proceed to more difficult problems, we shall find that 
a large part of the work is the manipulation of this transition mechanism. 
In many cases the mechanism will not depend on whether the problem is 
one of detection or estimation. Thus the difficult part of the problem will 
be applicable to either problem. This close relationship will become even 
more obvious as we proceed. We now return to the detection theory 
problem and consider a more general model. 

2.5 COMPOSITE HYPOTHESES 

In Sections 2.2 and 2.3 we confined our discussion to the decision 
problem in which the hypotheses were simple. We now extend our discus- 
sion to the case in which the hypotheses are composite. The term composite 
is most easily explained by a simple example. 

Example 1. Under hypothesis 0 the observed variable r is Gaussian with zero mean 
and variance a2. Under hypothesis 1 the observed variable r is Gaussian with mean m 
and variance 02. The value of m can be anywhere in the interval [MO, MJ. Thus 

(295) 

We refer to HI as a composite hypothesis because the parameter value M, which 
characterizes the hypothesis, ranges over a set of values. A model of this decision 
problem is shown in Fig. 2.25~. The output of the source is a parameter value M, 

which we view as a point in a parameter space X. We then define the hypotheses as 
subspaces of X. In this case HO corresponds to the point M = 0 and H1 corresponds 
to the interval [MO, Ml.] We assume that the probability density governing the 
mapping from the parameter space to the observation space, p&RIM), is known 
for all values of M in X. 

The final component is a decision rule that divides the observation space into two 
parts which correspond to the two possible decisions. It is important to observe that 
we are interested solely in making a decision and that the actual value of M is not of 
interest to us. For this reason the parameter M is frequently referred to as an 
“ unwanted” parameter. 

The extension of these ideas to the general composite hypothesis-testing 
problem is straightforward. The model is shown in Fig. 2.2%. The output 
of the source is a set of parameters. We view it as a point in a parameter 
space x and denote it by the vector 8. The hypotheses are subspaces of x. 
(In Fig. 2.25b we have indicated nonoverlapping spaces for convenience.) 
The probability density governing the mapping from the parameter space 
to the observation space is denoted by pJR18) and is assumed to be 
known for all values of 8 in x. Once again, the final component is a 
decision rule. 


