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In the previous chapters, we discussed the different communication methods that are used 
for continuous–time signals. Starting with chapter, we will talk about digital 
communication techniques. Before we can study the digital communication techniques, 
we need to study how to convert analog signals to digital signals. The first step in this 
process is called SAMPLING. In sampling, we convert continuous–time analog signals 
(signals that are defined at all time instants and have amplitudes that may take any real 
value) to discrete–time analog signals (signals that are defined at specific instants of time 
but still have amplitudes that may take any real value).  
 
Sampling 
 
A continuous–time analog or digital signal is defined at all time instants. On the other 
hand, a discrete–time analog or digital signal is defined only at some time instants. A 
simple method to sample a continuous–time signal at a specific time instant is to multiply 
this signal by a delta function that occurs at the time instant of interest. For example, let 
the signal  g(t) be a continuous–time signal with bandwidth  2πB rad/s (B Hz). The signal  
gs(t) given by 
 
 0 0 0( ) ( ) ( ) ( ) ( )sg t g t t t g t t tδ δ= ⋅ − = ⋅ −  
 
is zero everywhere and a delta function at time  t0 with an area (we will also call it 
magnitude) that is equal to the value of  g(t) evaluated at  t0,  that is a magnitude of value 
g(t0).  This represents getting only one sample of  g(t). If we want to sample g(t) 
periodically every  Ts then we can repeat this process periodically. That is, multiply the 
signal  g(t)  by a train of delta functions that occur every  Ts  seconds. A train of delta 
function δTs(t) that occur every  Ts is given by 
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Therefore, the sampled signal⎯g(t) is given by 
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So, the sampled signal is a sum of delta functions that have magnitudes equal to the value 
of g(t) at the time instants that the delta functions occur. The following figure shows a 
signal g(t). 
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and the following figure show the sampled signal ⎯g(t) where the amplitude of the deltas 
follows the original signal g(t). 
 

 
 
Assume that the spectrum of g(t) is given by G(ω) shown below. 
 

 
We can get the spectrum of  ⎯g(t) by find the spectrum of the train of delta functions and 
convolving it with G(ω), or by decomposing the train function into sine and cosine 
functions and then taking the Fourier transform of each element independently. Since the 
train of delta functions  δTs(t) is periodic, we can decompose it using the Fourier series as 
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where  Ts  and  ωs  are related by 
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The value of a0 is  
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and the value of the an for any n ≥ 1 is  
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Also, the value of  bn for any n ≥ 1 is 
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Therefore,  
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and  
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So, by taking the Fourier transform of each term of the above independently, we see that 
the spectrum ⎯G(ω) is given by 
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or simply scaled copies of the spectrum of the original continuous–time signal at multiples 
of the sampling frequency ωs. Therefore, the spectrum of the sampled signal would be 
 

 
 
To extract the original signal from the sampled signal, it is clear that using a LPF with 
bandwidth equal to the bandwidth of the original signal g(t) (which is 2πB rad/s in this 
case) will do the job. However, this is true only if the signal was sampled at a sampling 
rate that is greater than twice the bandwidth of the signal.  
 

 
 
If the signal was sampled at a sampling rate lower that 2 times the bandwidth of the signal 
(called the NYQUIST SAMPLING RATE), the different spectral components of the 
sampled signal (called IMAGES) will interfere with each other and reconstructing the 
original signal will be impossible. This is illustrated in the following figure. The dark parts 
in the figure represent parts of the sampled signal and reconstructed signal that have been 
damaged.  
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Examples of Aliasing in Real Life 
 
There are many real–life phenomena that result from aliasing, but many do not know that 
these are actually caused by aliasing. Here we will list two examples. 

1. When video taping a TV or a PC monitor, sometimes wide black lines appear 
moving at some speed from top to bottom or vice versa across the screen. This 
results because of the difference in sampling (number of pictures per second) of the 
video camera and the number of frames the TV or PC monitor display per second. 

2. When looking at something that rotates at high speed (such as a fan or a car’s 
wheel), you sometimes see that it is rotating in the opposite direction. This also 
happens because the human eye works like a video camera where it also takes 
pictures at a rate close to 24 pictures per second. If the rotating object rotates at a 
high speed that by the time the eye takes the next picture that object has revolved 
slightly less than one rotations, this object will appear as if it is rotating in the 
opposite direction.  

 
Anti–Aliasing Filters 

 
So now we know that when the whenever the bandwidth of the input signal to a sampler is 
greater than half the sampling frequency (in other words, the sampling frequency is less 
than twice the bandwidth of the input signal), aliasing will occur. Unfortunately, aliasing 
does not only destroy the part of the input signal that has frequency greater than half the 
sampling frequency, but also an equal part of input signal that is below half the sampling 
frequency. This is illustrated in the figure below. 
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So, it is clear that not only the range of the input signal [ωs/2 , 2πB] gets affected by 
aliasing, but all the range from [ωs–2πB , 2πB] is affected by aliasing. 
 
To SAVE HALF of the signal in the frequency range [ωs–2πB , 2πB], we can pass the 
input signal before sampling into a LPF that will cut all the part that is above ωs/2 so that 
the input signal to the sampling device has a bandwidth of exactly ωs/2. This means that a 
LPF with bandwidth ωs/2 called ANTI–ALIASING filter must be used. If the input signal 
to the sampler (which was produced by the anti–aliasing filter) has exactly half the 
sampling frequency, there will be no aliasing at all (but we will require an ideal LPF with 
bandwidth ωs/2 to reconstruct the continuous–time signal from the samples). Notice that 
the original input signal cannot be reconstructed back exactly because we removed part of 
it to avoid aliasing. Therefore, the block diagram of a practical sampling system is shown 
below. 
 

 
 
 
The signals in the above block diagram will be as follows. 
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