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Example: Find the Fourier transform of the following signal z(t)   [assume the sinusoid 
has the shape of cos(6πt)]. 

 

 
Solution: We need to decompose the signal z(t)  into simpler signals that will allow us to 
apply the FT to each component independently and then add the different FTs to get the 
overall FT of the signal z(t) . 
 
We easily see that the signal z(t)  can be decomposed into the signals z1(t) , z2(t) , and 
z3(t)  shown below  
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The signal z1(t) is itself composed of two signals: a ∆ function with amplitude of 2, 
centered around t = –4, and has width of 2 seconds;  and a rect function that also has 
amplitude of 2, is centered around t = –4, and has width of 2 seconds (note that the ∆ 
function is NOT added to a constant of 2 since doing this will result in a constant of 2 
everywhere with a triangular shape around t = –4, which is different from what we have 
here). Therefore,     
 

 1
4 4( ) 2 2rect

2 2
t tz t + +⎛ ⎞ ⎛ ⎞= ∆ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
The signal z2(t) is basically a cosine function [cos(6πt) as given in the problem] that is 
limited between  t = –3 and t = +1. Limiting a signal can be achieved by multiplying the 
unlimited signal (the cosine function in this case which extends from –inf. to +inf.) by a 
rect function that covers the range that we would like to limit the signal over. The center 
of the range we would like to limit the cosine over is t = –1  and the duration is 4 
seconds. Therefore, we have to multiply the cosine function by a rect centered at t = –1 
that has a width of 4 s. Therefore, 
 

 ( )2
1( ) 2cos 6 rect

4
tz t tπ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 
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The signal z3(t) is similar to z2(t) except that we have added a ∆ function to it that is 
centered at t = 4 and has a width of 6 s and amplitude of 3. Note that the ∆ function  is 
added and not multiplied. This can be seen by the upper and lower covers of the cosine 
function (the blue lines) where both are moving in a parallel form (when one increases, 
the other one also increases and vice versa). Therefore, 
 

 ( )3
4 4( ) 2cos 6 rect 3

6 6
t tz t tπ − −⎛ ⎞ ⎛ ⎞= + ∆⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
So,  
 
 

( ) ( )

1 2 3( ) ( ) ( ) ( )
4 4 1 4 42 2rect 2cos 6 rect 2cos 6 rect 3 .

2 2 4 6 6

z t z t z t z t
t t t t tt tπ π

= + +

+ + + − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ∆ + + + + ∆⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
Using the linearity property of the FT,  
 
 1 2 3( ) ( ) ( ) ( )Z Z Z Zω ω ω ω= + + . 
 
Find the FT of each signal at a time gives 
 

 Using FT 13 and 15 and FT property 7 in the table of the previous lecture. 
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 Using FT 13 and FT properties 7 and 13 in the table of the previous lecture. 
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( )( ) ( ) ( )( ) ( )

6 ( 1) 6 ( 1)
2

6 6

4 6 4 61( ) (2)4sinc (2)4sinc
2 2 2

4sinc 2 6 4sinc 2 6

j j

j j

Z e e

e e

ω π ω π

ω π ω π

ω π ω π
ω

ω π ω π

− − − − + −

− +

⎡ ⎤⎛ ⎞ ⎛ ⎞− +
= ⋅ + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= − ⋅ + + ⋅

 

 
 Using FT 13 and 15 and FT properties 7 and 13 in the table of the previous 

lecture. 
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⎛ ⎞+ ⎜ ⎟
⎝ ⎠

⎛ ⎞= − ⋅ + + ⋅ + ⎜ ⎟
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Now, just add the FTs given above to get the FT of z(t) . 
 
 
Signal Transmission Through a Linear System 
 
A communication system is usually described by its impulse response  h(t).  The impulse 
response of a system is basically the output of that system when the input signal to that 
system is a unit impulse function  δ(t). The impulse response of the system is the time–
domain representation of that system. The FT of the impulse response denoted H(ω) is 
known as the frequency response of the system.  
 
A signal  g(t)  that is transmitted through the system with the impulse response  h(t)  
produces an output signal  y(t) that is given by the convolution equation 
 
 )(*)()( thtgty = . 
 
In frequency domain, this can be represented as 
 
 )()()( ωωω HGY ⋅= . 
 
Decomposing this into a magnitude and a phase component gives 
 
 [ ])()()( |)(||)(||)(| ωθωθωθ ωωω HGY jj eHGeY +⋅= . 
 
Distortionless Transmission  
 
When transmitting a signal  g(t)  through a communication system, the system may or 
may not distort the transmitted signal.  A system that does not distort the transmitted 
signal is allowed to possibly change its magnitude and possibly delay it. If the output 
signal a specific communication system is an amplified/attenuated and delayed form of 
the input signal, than that system is called and distortionless communication system.  
 
Therefore, the output of a distortionless communication system is 
 
 )()( dttkgty −= , 
 
where  k  is a constant, and  td   is a time delay that is greater than zero. In frequency 
domain, this gives 
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 dtjekGY ωωω −= )()(    dtjkeH ωω −=)(   
 
      kH =|)(| ω  & dH tωωθ −=)(  
 
A system that is described by the above frequency response is known as a distortionless 
system or a linear phase system (the phase of the frequency response changes linearly 
with the frequency). 
 
Notice that the impulse response of the system described by the frequency response H(ω) 
given above is 
 
 )()( dttkth −= δ . 
 
Therefore, inputting an impulse function into this system produces a scaled and delayed 
impulse function at the output. The important thing here is that the input signal is not 
distorted but only delayed and scaled.   
 
 
Electric Filters 
 
Filters are electric devices that allow part of their input signals to pass and block part of 
their input signals. The distinction between the parts that are blocked and the parts that 
are allowed to pass is based on frequency. The range of frequencies that are allowed to 
pass is called the PASSBAND and the range of frequencies that are blocked is called 
STOPBAND.  A Low–Pass Filter (LPF) is a filter that allows low frequencies up to a 
specified frequency to pass and block the rest of the frequencies. A High–Pass Filter, on 
the other hand, allows all frequency components that are above a specific frequency to 
pass and block the rest. A Band–Pass Filter is a filter that allows frequencies in a specific 
range that is greater than zero and less than infinity to pass and blocks frequencies above 
or below that range.  
 
a) Low–Pass Filters (LPF): a major characteristic of LPFs is the bandwidth of the 

filter. The bandwidth of a LPF is half the width of pulse of its frequency 
response (i.e., the width of the part of the pulse that is in the positive range of the 
frequency which is  W1 ). The frequency  W1  is also known as the CUTOFF 
frequency of the filter.   
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b) High–Pass Filters (HPF): no bandwidth is defined for a HPF since the frequency 
response of that filter extends up to infinite. However, this filter is characterized 
by its CUTOFF frequency, which is W1 as shown below.  

 

 
 
 
 

 
c) Band–Pass Filters (BPF): the BPF is characterized by two frequencies,  W1  

known as the LOWER CUTOFF frequency, and  W2  known as the UPPER 
CUTOFF frequency. The bandwidth of that filter is also the width of pulse that is 
in the positive frequency region, or  BW =  W2 – W1. 

 
 
 

 
Ideal vs. Real Filters: 
 
The frequency responses for the three types of filters shown above are those of ideal 
filters. The reason is that there is an extremely sharp transition between the passbands 
and stopbands of these filters. The sharpness of the transition between passband and 
stopband is determined by something called the ORDER of the filter. The order of the 
filter is generally determined by the number of reactive components (capacitors and 
inductors) that are used in that filter. A zero–order filter (no capacitors or inductors) is 
basically a flat filter that allows all signals to pass. A first–order filter (one capacitor or 
inductor) is a filter that has very smooth transition between the passband and stopband. A 
second–order filter (number of reactive elements = number of capacitors + number of 
inductors = 2) has a sharper transition. The ideal filters shown above have in fact an 
infinite order (require an infinite number of inductors or capacitors, which makes them 
unrealizable (cannot be built in practice). Also an ideal filter would result in an infinite 
amount of delay between the input and output signals, which would make it useless even 
if you were able to build it.  
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