Trigonometric Fourier Series

Let $g(t)$ be one of the following:

1. a periodic signal with period T_{0},
2. any signal in which we are interested in the time interval of $t_{1} \leq \mathrm{t} \leq t_{1}+T_{0}$,

The signal $g(t)$ in the interval $t_{1} \leq \mathrm{t} \leq t_{1}+T_{0}$ can be represented by the trigonometric Fourier series in terms of a sum of the following sinusoids:

$$
\begin{aligned}
& \left\{1, \cos \left(\omega_{0} t\right), \cos \left(2 \omega_{0} t\right), \cos \left(3 \omega_{0} t\right), \ldots \ldots\right. \\
& \left.\quad, \sin \left(\omega_{0} t\right), \sin \left(2 \omega_{0} t\right), \sin \left(3 \omega_{0} t\right), \ldots \ldots\right\},
\end{aligned}
$$

or the compact Fourier series sinusoids:

$$
\begin{equation*}
\left\{1, \cos \left(\omega_{0} t+\theta_{1}\right), \cos \left(2 \omega_{0} t+\theta_{2}\right), \cos \left(3 \omega_{0} t+\theta_{3}\right), \ldots \ldots\right\} \tag{1}
\end{equation*}
$$

where the frequency ω_{0} and T_{0} are related by $T_{0}=2 \pi / \omega_{0}$.
The basis for this representation is that the different sinusoids shown above are "orthogonal". Two signals $a(t)$ and $b(t)$ are orthogonal over a period T of time if

$$
\int_{T} a(t) \cdot b(t) d t=0 .
$$

This is true for all of the sinusoids given above in (1) over a period $T_{0}=2 \pi / \omega_{0}$.
The representation of $g(t)$ is given by

$$
\begin{aligned}
g(t)=a_{0} & +a_{1} \cos \left(\omega_{0} t\right)+a_{2} \cos \left(2 \omega_{0} t\right)+a_{3} \cos \left(3 \omega_{0} t\right)+\ldots \\
& +b_{1} \sin \left(\omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)+b_{3} \sin \left(3 \omega_{0} t\right)+\ldots
\end{aligned} \quad t_{1} \leq t \leq t_{1}+T_{0}
$$

which can be written as

$$
g(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right) \quad t_{1} \leq t \leq t_{1}+T_{0}
$$

or using the compact sinusoids as

$$
g(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \quad t_{1} \leq t \leq t_{1}+T_{0}
$$

The coefficients a_{0}, a_{n}, and b_{n} shown above can be evaluated using

$$
a_{0}=\frac{1}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) d t,
$$

The coefficient a_{0} represents the average (or the DC value) of the function. So, for functions that have zero DC , the coefficient a_{0} will be zero.

$$
\begin{array}{ll}
a_{n}=\frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \cos \left(n \omega_{0} t\right) d t & n=1,2,3, \ldots \\
b_{n}=\frac{2}{T_{0}} \int_{t_{1}}^{t_{1}+T_{0}} g(t) \sin \left(n \omega_{0} t\right) d t & n=1,2,3, \ldots
\end{array}
$$

A trigonometric identity in the form of

$$
a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)=C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)
$$

exits, where the relation between the coefficients a_{n} and b_{n} and the coefficients C_{n} and θ_{n} is given by

$$
C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}},
$$

and

$$
\theta_{n}=\tan ^{-1}\left(\frac{-b_{n}}{a_{n}}\right)
$$

such that $\quad C_{0}=a_{0}$.

Comments:

1. All cosine functions $\cos \left(n \omega_{0} t\right)$ are even functions (they are symmetric about the y-axis). Since an odd function can never be represented in terms of even functions, a_{n} of the Fourier series for an odd function are always zero for all values of n.
2. All sine functions $\sin \left(n \omega_{0} t\right)$ are odd functions (they are anti-symmetric about the y-axis or symmetric about the origin). Since an even function can never be represented in terms of odd functions, b_{n} of the Fourier series for an even function are always zero for all values of n.
3. For a periodic function that is not even and not odd, at least some of the coefficients a_{n} and some of the coefficients b_{n} will be non zero.
4. The frequency ω_{0} is called the fundamental frequency of the periodic signal $f(t)$ and the multiple of this frequency $n \omega_{0}$ is called the $n^{\text {th }}$ harmonic of this fundamental frequency. The fundamental frequency represents the lowest frequency component contained in $f(t)$. Two signals: a sine wave with frequency ω_{0} and a square wave with frequency ω_{0} will sound similar when played using a speaker except that the square wave will also contain higher harmonics.
5. The Fourier series of part of a non-periodic signals is similar to the Fourier series of a periodic signal that is obtained by repeating that part of non-periodic signal to the right and to the left.

Exponential Fourier Series

We also can represent the function $g(t)$ in terms of complex exponentials as

$$
g(t)=\sum_{n=-\infty}^{\infty} D_{n} e^{j n \omega_{0} t}=D_{0}+\sum_{\substack{n=-\infty \\(n \neq 0)}}^{\infty} D_{n} e^{j n \omega_{0} t}
$$

where

$$
D_{n}=\frac{1}{T_{0}} \int_{T_{0}} g(t) e^{-j n \omega_{0} t} d t .
$$

Therefore, D_{n} is related to C_{n} and θ_{n} as

$$
\left|D_{n}\right|=\left|D_{-n}\right|=\frac{1}{2} C_{n}, \quad \angle D_{n}=-\angle D_{-n}=\theta_{n} .
$$

Examples:

1. Find the Fourier series coefficients a_{n} and b_{n} for
a) the aperiodic signal $g(t)=|t|, \quad-0.5 \leq t \leq 1.5$,

Solution:

Although this signal is non-periodic, we can still find its Fourier series expansion between the two points $t=-0.5$ to 1.5 as follows.

We will consider T_{0} to be $T_{0}=1.5-(-0.5)=2 \mathrm{sec} \rightarrow \omega_{0}=2 \pi / T_{0}=\pi \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-0.5}^{1.5}|t| d t \\
& =\frac{1}{2} \int_{-0.5}^{0}-t \cdot d t+\frac{1}{2} \int_{0}^{1.5} t \cdot d t \\
& =-\left.\frac{1}{4} t^{2}\right|_{-0.5} ^{0}+\left.\frac{1}{4} t^{2}\right|_{0} ^{1.5} \\
& =-\frac{1}{4}(0-0.25)+\frac{1}{4}(2.25-0) \\
& =0.625
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \int_{-0.5}^{1.5}|t| \cos \left(n \omega_{0} t\right) d t \\
& =\frac{1}{2} \int_{-0.5}^{0}-t \cdot \cos \left(n \omega_{0} t\right) d t+\frac{1}{2} \int_{0}^{1.5} t \cdot \cos \left(n \omega_{0} t\right) d t
\end{aligned}
$$

Now we will have to integrate using the integration by parts method. That is

$$
\int_{T} u d v=\left.u v\right|_{T}-\int_{T} v d u
$$

So, if we let $u=t$ we will get, $\quad d u=d t$
and $\quad d v=\cos \left(n \omega_{0} t\right) \cdot d t$,
and $\quad v=\left(1 / n \omega_{0}\right) \sin \left(n \omega_{0} t\right)$
$a_{n}=-\frac{1}{2}\left(\left[\frac{t}{n \pi} \sin (n \pi t)\right]_{-0.5}^{0}-\int_{-0.5}^{0} \frac{1}{n \pi} \sin (n \pi t) d t\right)+\frac{1}{2}\left(\left[\frac{t}{n \pi} \sin (n \pi t)\right]_{0}^{1.5}-\int_{0}^{1.5} \frac{1}{n \pi} \sin (n \pi t) d t\right)$

Now completing the remaining integrations and evaluating the coefficients a_{n} becomes straight forward. Computing the coefficients a_{n} is performed in exactly the same manner.
b) the periodic signal $f(t)$ shown below

c) the periodic signal $h(t)$ shown below

