K ing F ahd U niversity of P etroleum and M inerals
 Electrical Engineering Department
 EE 208: Electrical Systems

 Instructor: Elmar Ml. WoharETome MYORIx 7

1. A balanced $\mathbf{Y}-\mathbf{Y}$ three phase circuit has $\mathbf{V}_{\mathbf{a n}}=\mathbf{1 3 0} \angle \mathbf{2 0 ^ { \circ }}$. The per phase impedance of the load is $\mathbf{Z}_{\mathbf{p}}=\mathbf{1 0} \Omega$. Given that the line impedance is zero, find the following.
a. All phase voltages of the source.
b. All line voltages of the source.
c. All phase voltages of the load.
d. All line voltages of the load.
e. All line currents.
f. All phase currents of the load.
g. The total power absorbed by the load.
2. A Δ-load has a $\mathbf{2 0}-\Omega$ resistance in each of its phases. If this load is connected to a three-phase Δ - connected generator having a line voltage $\mathbf{V}_{\mathbf{a b}}=\mathbf{2 0 8} \angle \mathbf{0}^{\circ} \mathrm{V}$ and given that the line impedance is zero, find the following.
a. All phase voltages of the source.
b. All line voltages of the source.
c. All phase voltages of the load.
d. All line voltages of the load.
e. All line currents.
f. All phase currents of the load.
3. A balanced $\Delta-\mathbf{Y}$ three phase system has $\mathbf{V}_{\mathbf{a b}}=\mathbf{3 8 0} \angle \mathbf{4 5}^{\circ}$. Each phase of the load is a $132.5 \mu \mathbf{F}$ capacitor. Neglecting the line impedance, find the following. The frequency of the source is 60 Hz .
a. All phase voltages of the source.
b. All line voltages of the source.
c. All phase voltages of the load.
d. All line voltages of the load.
e. All line currents.
f. All phase currents of the load.
g. The total reactive power of the load.
4. A balanced $\mathbf{Y}-\Delta$ three phase system has $\mathbf{V}_{\mathrm{an}}=\mathbf{1 0 0} \angle \mathbf{3 0} \mathbf{0}^{\circ}$. The per phase impedance of the load is $\mathbf{Z}_{p}=\mathbf{3} \Omega$. Given that the line impedance is $\mathbf{1} \Omega$, find the following.
a. All phase voltages of the source.
c. All phase voltages of the load.
e. All line currents.
g. The total power absorbed by the load.
b. All line voltages of the source.
d. All line voltages of the load.
f. All phase currents of the load.
