King Fahd University of Petroleum and Minerals

Electrical Engineering Department

EE 208: Electrical Systems

Department EE *Instructor: Elmar III. Johar*

Home Work #4

1. The current across a 0.5H inductor is given by:

$$i_s = \begin{cases} 0 & t < -1 & \& t \ge 1 \\ 1 - t^2 & -1 \le t < 1 \end{cases}$$

Find: $i_L(t)$, p(t), $w_L(t)$ and plot them.

- **2.** For the circuit shown, if the voltage $v_s(t) = 3e^{-5t}[V]$ for $t \ge 0$,
 - a. find $i_c(t)$ for $t \ge 0$.
 - b. find the energy stored in the capacitor for $t \ge 0$.

3. The voltage across the capacitor in the circuit below is given by:

$$v_{c}(t) = \begin{cases} 0, & t \le 0 \\ 3t, & 5 \ge t > 0 \\ -3t + 30, & 5 \le t > 10 \\ 0, & t > 10 \end{cases}$$

Find: $i_c(t)$, $v_s(t)$ and $w_c(t)$

4. For the circuit shown, calculate the unknown quantities.

5. If the **value of L** is equal to the equivalent inductance at terminals a & b, **find the equivalent inductance**.

6. In the circuit shown below, what <u>value of R</u> will make the **energy** stored in the **inductor** and the **capacitor** equal?

